
GROUPE

REGARDS

Technical Report
CG{1998/1

UCL Crypto Group Technical Report Series

http://www.dice.ucl.ac.be/crypto/

Place du Levant, 3
B-1348 Louvain-la-Neuve, Belgium

Phone: (+32) 10 472541
Fax: (+32) 10 472598

A practical implementation of the

timing attack

J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestr�e,

J.-J. Quisquater and J.-L. Willems



A practical implementation of the timing

attack�

J.-F. Dhem1), F. Koeune3), P.-A. Leroux3), P. Mestr�e2),

J.-J. Quisquater3) and J.-L. Willems3)

June 15, 1998

1) Belgacom Multimedia & Infohighways,
Bld E. Jacqmain 177,

B-1030 Brussels, Belgium
E-mail: dhem@belbone.be

2) PWI,
Rue du Planeur, 10, B-1130 Brussels, Belgium

E-mail: mestre.p@banksys.be

3)D�epartement d'�Electricit�e (DICE), Universit�e catholique de Louvain
Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium
E-mail: fkoeune,leroux,jjq,willems@dice.ucl.ac.be

Abstract. When the running time of a cryptographic algorithm is non-

constant, timing measurements can leak informations about the secret

key. This idea, �rst publicly introduced by Kocher, is developed here

to attack an earlier version of the CASCADE smart cardy. We pro-

pose several improvements on Kocher's ideas, leading to a practical
implementation that is able to break a 512-bit key in a few minutes,

provided we are able to collect 300 000 timing measurements (128-bit

keys can be recovered in a few seconds using a personal computer and

less than 10 000 samples). We therefore show that the timing attack

represents an important threat against cryptosystems, which must be

very seriously taken into account.

Keywords: timing attack, cryptanalysis, RSA, smart card.

�This work has been done when J.-F. Dhem and P. Mestr�e were research assistants at
the UCL Crypto Group.

yLater modi�ed to resist against it.

CG{1998/1

c1998 by UCL Crypto Group

For more informations, see

http://www.dice.ucl.ac.be/crypto/techreports.html



A practical implementation of the timing attack 2

1 Introduction

Implementations of cryptographic algorithms often perform computations in
non-constant time, due to performance optimizations. If such operations in-
volve secret parameters, these timing variations can leak some information
and, provided enough knowledge of the implementation is at hand, a care-
ful statistical analysis could even lead to the total recovery of these secret
parameters (�g. 1).

difference
Time

Protocol, smartcard, ...

Implementation
Question

Answer

Secret

Figure 1: The timing attack principle.

This idea was �rst presented by Kocher [Koc96], who laid the foundations
of the basic ideas exploited in this paper. However, the results of Kocher were
quite theoreticalz and we found them rather di�cult to exploit in practice.
This paper presents an e�ective and e�cient attack of a cryptographic al-
gorithm running on a smart card. The �rst practical timing attack to our
knowledge was described at the rump session of CRYPTO'97 by Lenoir. Our
paper, however, develops quite di�erent ideas.

Another problem of the attack presented by Kocher is that the attacker
needs a very detailed knowledge of the implementation of the system he is
attacking, as he has to be able to compute the partial timings due to the
known part of the key. As for this paper, the knowledge needed is very
limited, which makes the attack quite general and easy to carry out.

Last but not least, some completely new ideas, such as the attack of the
square rather than the multiply, are presented.

We begin by presenting the model we are attacking and the characteristics
it must present to be vulnerable. We then describe the attack that was carried
out, as well as its results and possible improvements. Finally, we describe
some countermeasures that would allow to defeat it.

zKocher identi�ed several targets for the timing attack and ran simulations to determine
what the success rate would be for an attack of the modular multiplication, but did
apparently not carry out the attack itself.

CG{1998/1



A practical implementation of the timing attack 3

We try to present both a formal and an intuitive view of the timing attack,
our goal being to make the principle of the attack easy to understand, but
also to provide a detailed enough description to allow the reader to implement
it without encountering major problems.

2 The general framework

We here give the characteristics that the system must present to be vulner-
able, and briey formalize the model in which our attack will be drawn.

Given a message m as input, an algorithm A performs a computation
(that we call a signature) using a secret key k. We note:

M , the set of messages,
K, the set of keys,
S, the set of signed messages,
A : M �K ! S : (m; k)! A(m; k), the signature of m with the secret key
k,
B = f0; 1g,
T : M �K !R : m! t = T (m; k), the time taken to compute A(m; k).
O : M ! B : m ! O(m), an oracle, based on our knowledge of the im-
plementation, that provides us some information about the details of the
computation of A(m; k).

Remark: It may look surprising that the oracle does not depend on the
key k, although the computation of A(m; k) does, but this is precisely the
idea of this paper: typically, we want to build a decision criterion (formalized
by the oracle) that will be meaningful or not, depending on the actual value

of some bit of the key. By observing the meaningfulness of our criterion, we
will deduce the bit value.

The scenario of our attack is the following: Eve disposes of a sample of
messages and, for each of them, the time needed to compute the signature
of the message with the key k. Her goal is to recover k, which can thus be
considered as an unknown parameter rather than as a variable. To simplify
our notations, we will thus simply note T (m) instead of T (m; k).

To attack the bit i of the key k, Eve will use an oracle O to build two
subsets of messages M1;M2 �M . We will denote the corresponding timings
by the functions:

F1 :M1 !R : m! F1(m) = T (m)

CG{1998/1



A practical implementation of the timing attack 4

F2 :M2 !R : m! F2(m) = T (m)

Suppose these two functions have the following properties:8>>>><
>>>>:

If ki = 0, then F1 is a random variable v0
1

F2 is a random variable v02

If ki = 1, then F1 is a random variable v11
F2 is a random variable v1

2

and suppose that, for a parameter of these random variables �(v) (e.g. the
mean or the variance) we have:

�(v0
1
) = �(v0

2
) and �(v1

1
) > �(v1

2
)

then with the following statistical test:

H0 : �(F1)
?
= �(F2)

H1 : �(F1)
?

> �(F2)

we deduce that if H0 is accepted with error probability �, then i = 1 with
error probability �.

In other words, this means that Eve is able to construct two samples of
messages and two functions whose statistical behaviours will depend on the
actual value of the bit i. By observing the relative behaviours of the two
functions, Eve will be able to determine, with a certain error probability, the
value of the bit i. Of course, couples of ciphertexts / decryption timings,
with the same properties, could also be used.

3 Towards a practical attack

3.1 The implementation

We have attacked an RSA computation (without CRT), performed in an
earlier version of the cryptographic library we developed for the CASCADE
[Cas] smart card:

The computation in the smart card was: mk mod n.

The algorithm is the left to right square and multiply (�g. 3.1).

Both the multiplication and the square are done using the Montgomery
algorithm. The time for a Montgomery multiplication is constant, indepen-
dently of the factors, except that, if the intermediary result of the multipli-
cation is greater than the modulus, then an additional subtraction (called a
reduction) has to be performed.

CG{1998/1



A practical implementation of the timing attack 5

x = m
for i = n� 2 downto 0

x = x2

if (kj == 1) then
x = x �m

endfor

return x

Figure 2: Square and multiply

3.2 A �rst attempt: attacking the multiply

The most obvious way to take advantage of this knowledge is to aim our
attack at the multiply step of the square and multiply. The idea is the
following:

We start by attacking k2, the second bitx (MSB �rst) of the secret key.
Performing the Montgomery algorithm step-by-step, we see that, if that bit
is 1, then the value m �m2 will have to be computed during the square and
multiply.

Now, for some messages m (those for which the intermediary result of the
multiplication will be greater than the modulus), an additional reduction will
have to be performed during this multiplication, while, for other messages,
that reduction step will not be necessary. So, we are able to divide our set of
samples in two subsets: one for which the computation of m �m2 will induce
a reduction and another for which it will not. If the value of k2 is really 1,
then we can expect the computation times for the messages from the �rst set
to be slightly higher than the corresponding times for the second set.

On the other hand, if the actual value of k2 is 0, then the operation
m �m2 will not be performed. In this case, our \separation criterion" will be
meaningless: there is indeed no reason for which am inducing a reduction for
the operationm�m2, would also induce a reduction form2�m2, or for any other
operation. Therefore, the separation in two subsets should look random, and
we should not observe any signi�cant di�erence in the computation times.

Let us rewrite this a little more formally:

The algorithm A(m; k) could be split into L(m; k) and R(m; k) where
L(m; k) is the computation due to the additional reduction at the multipli-
cation phase for bit k2 and R(m; k) the remaining computations. This gives
for the computation times: T (m) = TL(m) + TR(m), where TL(m), TR(m)

xWe can of course suppose that the �rst bit of the key is always 1.

CG{1998/1



A practical implementation of the timing attack 6

are the times to compute L(m; k) and R(m; k) respectively.

The oracle O is:

O : m!

�
1 if m �m2 is done with a reduction,
0 if m �m2 is done without a reduction.

As in section 2, de�ne

M1 = fm 2M : O(m) = 1g;
M2 = fm 2M : O(m) = 0g;
F1 : M1 ! R : m! F1(m) = T (m);
F2 : M2 ! R : m! F2(m) = T (m):

We have �
F1 = TR if k2 = 0
F1 = TR + TL if k2 = 1

while,
F2 = TR

independently of the value of k2.

Now, analyzing the mean as parameter �, and testing:

H0 : �(F1)
?
= �(F2)

H1 : �(F1)
?

6= �(F2)

should reveal the value of k2.

Once this value is known, we can simulate the computation up to the
multiplication due to bit k3, attack it in the same way as described above,
and so on for the next bits.

3.3 Problems

Using the previous attack, we were able to recover 128-bit keys by observing
samples of 50 000 timings.

However, this method is not fully satisfying. Mainly two problems arise:
Firstly, the operations we observe are multiplications by a constant value
m, and these operations seem to be much more correlated than expected.
Rather surprisingly, we observed that, while the probability for an additional
reduction to be necessary when the two factors and the modulus are random
is about 0:17, this probability will, when the modulus and one factor are �xed,
vary between 0 and 0:5, depending on modulus and factor (see �gure 3). So,

CG{1998/1



A practical implementation of the timing attack 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

Figure 3: With �xed modulus, probability for an additional reduction to take
place when multiplying by a constant factor. The test has been carried out
with 4 500 factors and, for each of them, with 20 000 multiplications.

although it seems di�cult to explain theoretically, our selection criterion
seems to be highly biased.

Secondly, the decision we have to make is of the type: \are these two
samples di�erent or not". That is, we have to decide, on the basis of a
�nite set of measures, whether the di�erences we observe between the two
sets is signi�cant or not. Statistics can be of some help, but not as much
as could be expected. As we said before, Montgomery multiplication by a
constant seems to be a biased operation, so that the two subsets we build
always appear di�erent, even if the corresponding bit is 0. The answer to the
statistical tests we tried is always positive, at a very high level of con�dence.
So, the question we have to ask is rather: \are these two samples `very'
di�erent, or simply di�erent ?".

Luckily, statistics can though be used to answer that question: we can
simply decide that our two subsets are very di�erent when the observed value
for the statistic is `very high', and that they are simply di�erent when the
value is `not so high'. The problem will now be to decide what \very high"
and \not so high" mean{, and we will have to tune up some swap value for

{For example, attacking a 128-bit key using 50 000 samples and the �2 test, a typical

CG{1998/1



A practical implementation of the timing attack 8

each key we attack. Some heuristics can help us in this tuning operation,
but we will not describe them here, as there is a more e�cient approach:

Aiming our attack at the square operation solves both of these problems.

3.4 Attacking the square

There is a more subtle way to take advantage of our knowledge of the Mont-
gomery algorithm: instead of the multiplication phase, we could turn our-
selves to the square phase.

The idea is quite similar to that of section 3.2: suppose we know the �rst
i� 1 bits of the key and attack the ith. We begin by executing the �rst i� 1
steps of the square and multiply algorithm, stopping just before the possible
- but unknown - multiplication by m due to bit ki ; we denote by mtemp the
temporary value we obtain.

First, we suppose ki is set. If this is the case, the two next operations to
be performed are

1. multiply mtemp by m,

2. square the result,

and both of these operations will be done using the Montgomery algorithm.
We simply execute the multiplication and then, for the square, determine
whether an additional reduction will be necessary or not. Doing this for every
message, we divide our samples set in two subsets M1 (additional reduction)
and M2 (no reduction).

Next, we suppose ki = 0. In this case, no multiplication will take place,
and the next operation will simply be

m2

temp:

Once again, we divide the samples set in two subsets M3 and M4, depending
on whether this square requires a reduction or not.

Clearly, only one of these separations makes sense, depending on the
actual value of ki. All we have to do now is to compare the separations:
if the timing di�erence between M1 and M2 is more important than that
between M3 and M4, then conclude ki = 1, otherwise, conclude ki = 0.

observed value for the statistic was about 4300, which is much, much higher than �20:95. We
can however decide that values above 4320 correspond to \very di�erent", while values
beyond 4320 correspond to \simply di�erent". This may look tedious on a theoretical
point of view, but works well in practice and allowed us to recover the secret key.

CG{1998/1



A practical implementation of the timing attack 9

Back to formalization, to attack bit ki knowing bits k0; : : : ; ki�1, we split
the algorithm A(m; k) into L(m; k), which is the computations due to the
additional reduction at the square phase at step i + 1, and R(m; k), the
remaining computations.

Compute

mtemp = (mb)2 where b = k0k1 : : : ki�1:

We need two oracles,

O1 : m!

�
1 if (mtemp �m)2 is done with a reduction,
0 if (mtemp �m)2 is done without a reduction,

O2 : m!

�
1 if (mtemp)

2 is done with a reduction,
0 if (mtemp)

2 is done without a reduction.

De�ne

M1 = fm 2M : O1(m) = 1; g
M2 = fm 2M : O1(m) = 0; g
M3 = fm 2M : O2(m) = 1; g
M4 = fm 2M : O2(m) = 0; g
Fk :Mk ! R : m! Fk(m) = T (m); for 1 � k � 4:

If ki = 1, we have8<
:
F1 = TR + TL

F2 = TR

F3 = F4 (= TR + TL �O1, but this is not so important)

and thus �(F1) > �(F2), while �(F3) = �(F4).

On the other hand, if ki = 0, we have8<
:
F1 = F2

F3 = TR + TL

F4 = TR

and thus �(F3) > �(F4), while �(F1) = �(F2).

Testing which of these conditions is true should reveal the value of ki.

Remark: The last bit cannot be revealed by this attack and must thus
be guessed.

This attack does not su�er from the problems mentioned in previous
section:

CG{1998/1



A practical implementation of the timing attack 10

� Firstly, the operation we are observing (i.e. the square) does not involve
a constant factor, and its behaviour appears to be much less biased than
for the multiplication.

� Secondly, we do not have anymore to decide whether a separation makes
sense or not: we have now to compare two separations and decide which
is the most signi�cant. We are thus relieved of the di�cult task to tune
up an appropriate swap value for a given key.

Using this attack, we were able to recover 128-bit keys with 20 000 timings.
Some keys were disclosed with only 12 000 timings.

4 Statistics

We have not yet said very much about the statistics we have to use to compare
samples, and that is mainly because they were not very useful in practice. We
tried several of the tools that statistics o�ers to compare two samples, such
as the Chi-square, Student, Hotteling, and even a test from non-parametric
statistics, the Wald-Wolfowitz [Sie56] test. None of them o�ered really e�-
cient results. Chi-square and Student provided criteria upon which a right
decision could be made, but a simple comparison of the means of the two
populations allowed the same decision, with a similar, if not better, success
rate.

There is, however, a possible use for statistics: as the Chi-square test, for
example, does not seem to yield the same errors as the means comparison,
it can be used to provide us with some sort of level of con�dence in the
goodness of our choices. When both tests agree on the value of some bit, it
is more probably right than when they disagree, and this can help us to detect
erroneous deductions. We implemented this in practice, and it appeared to be
of some help, but did not produce any signi�cant breakthrough in e�ciency.

The reason for this uselessness of statistics is probably the one we men-
tioned before, that is, Montgomery multiplications with constant modulus
are not independent events, and our decision criteria are thus biasedk. Per-
haps a better understanding of why this bias appears would allow to derive
an useful statistical test? Up to now, however, they seems to be limited to a
role of con�rmation.

kThis is also true for square, even it is at a much less extend than for multiplication
by a constant factor.

CG{1998/1



A practical implementation of the timing attack 11

5 Error-detection

One remarkable property of our attack is that it has an error-detection prop-
erty. This is easy to understand on an intuitive point of view: remember
that the attack basically consists in simulating the computations until some
point, then build two decision criteria, with only one of them making sense,
depending on the searched value, and �nally decide the bit value by observing
which criterion actually makes sense. Also note that each step of the attack
relies on the previous ones (we need the previous bits values to simulate the
computation).

Now, suppose we made an erroneous decision for the value of bit ki. In
the following step, we will not correctly simulate the computations, so that
the value mtemp we will obtain will not be the one involved in step i+1. Our
attempts to decide whether the Montgomery multiplications will involve an
additional reduction or not will thus not make sense, and the criteria we will
build will both be meaningless. This remains true for the following bits.

In practice, this translates to abnormally close values for the two sepa-
rations: while, as long as the choices were right, the two separations were
generally�� easy to distinguish, one of them being clearly more signi�cant
than the other, they appear much more similar (and both bad) after an erro-
neous choice has been made. This fact is well illustrated in �gure 4, showing
the attack of a 512-bit key on the basis of 350 000 observations. The decision
criterion is simply the di�erence between the mean times for the two subsets,
and the graph shows the absolute value of di� 1 (the di�erence between M1

and M2) minus di� 2 (di�erence between M3 and M4). Clearly, an error has
occured near bit 149.

Once an error has been detected, it is not di�cult to take back, make
a di�erent choice for the last chosen bit, and go ahead a few steps to see if
things go better; if they do not, then we go back two steps, change the bit
value, and so on.

In practice, this error-correction scheme allowed us to reduce signi�cantly
the amount of measures needed. Samples of 10 000 timings, for example, were
su�cient to recover 128-bit keys, and some of them were revealed with as
few as 6 000 timings.

��There are however some tedious cases, were the two criteria are uneasy to di�erentiate
although no error has been made. That is why it is better to wait until several contiguous
low values are observed before to conclude to an error.

CG{1998/1



A practical implementation of the timing attack 12

0

100

200

300

400

500

600

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496 511

Figure 4: Detection of an error for a 512-bit key

6 Practical results

Our attack was �rst implemented in Visual C++ 4.2 on a 200 MHz Pen-
tiumPro PC under Windows NT.

Timings were collected using an emulator of the CASCADE smart card,
that was able to monitor the number of cycles between two points. This
seems to be quite a realistic scenario: the amount of measures required for a
real attack of the electronic device would probably be slightly larger, to �lter
out additional noise, but we believe it should not grow too much.

With about 10 000 samples (couples messages, time for modular exponen-
tiation), we were able to break 128-bit keys, at a rate of about 4 bits/s. The
speed for a 512-bit key was of a little more than 1 bit/minute and approxi-
mately 350 000 samples were needed. The implementation was not optimized
for speed.

Our results summarize as follows:

Result
Key size without error correction with error correction

sample size speed sample size speed

64 1 500{6 500 > 20 bits/s 1 500{4 500 > 20 bits/s
128 12 000{20 000 2 bits/s 6 000{10 000 4 bits/s
256 70 000{80 000 1 bit/4s 15 000{50 000 1 bit/2s
512 �350 000 1 bit/65s

CG{1998/1



A practical implementation of the timing attack 13

However, these results correspond to a very high success rate: the error-
correction algorithm we implemented was very simple and allowed us to cor-
rect errors only if they occur for a very small percentage of the bits. Exper-
iments showed that the sample size grows very fast with the desired success
rate (see e.g. �gure 5).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

50

66

75

80

85

90

95

99
100

# Samples

K
ey

 r
ec

ov
er

y 
%

Figure 5: Sample size / success rate dependence

A more sophisticated algorithm, that would for example explore several
choices when a possible error is detected, handle the case of two successive
errors, . . . , would probably resist to a higher error rate, thus allowing to
reduce drastically the amount of measures needed.

As most of the computational e�ort consists in simulating the exponen-
tiation steps for a large amount of data, the attack would also be very easy
to parallelize. Experiments on a network of 20 Sparc Ultra-5 workstations
(with is, nowadays, a reasonable computing power) showed that 512-bit keys
could be recovered in few minutes.

CG{1998/1



A practical implementation of the timing attack 14

7 Remarks about the attack

7.1 Accuracy of measures

The timing variation we are basing our attack on is that of one modular re-
duction. This timing is of course very small regarding the total computation.
For example, a 512-bit exponentiation on the CASCADE chip takes about
7 400 000 cpu cycles, and the time for a modular reduction is 422 cycles!

The accuracy in measures is therefore of great importance. As the round-
ing e�ect induced by less accurate measures can be considered as noise, a
greater amount of measures would still make the attack possible, but the
sample size would rapidly grow.

7.2 Choice of messages

It is worth noting that we simply need to be able to determine the value
of O(m) for each message: we do not have to build messages for which the
oracle will have a given value. This is important because many protocols
will not accept to sign arbitrary message, but will require for these to have a
speci�c format (e.g. to exhibit some redundancy). As long as we are able to
trace the transformations preceding the modular exponentiation, the attack
can be carried out.

7.3 Knowledge of the implementation

We also insist on the fact that we do not need too many details about the
implementation of the cryptographic algorithm itself. All we have to know
is that the exponentiation is square-and-multiply with Montgomery multi-
plication. It is amazing to note that one of the authors began with the
timing-attack program before the CASCADE library was available for him.
He thus decided to build his own exponentiation routine as a �rst target.
When he �nally received the CASCADE library, he discovered that his at-
tack program did not need any modi�cation to work against it.

7.4 Possible improvements

Even if the number of samples at disposal in not su�cient to discover the
complete key, the attack is likely to reveal a part of it : we observed that
samples twice as small as the required size for complete recovery could re-
veal 3/4 of the key before the �rst error occurs (as we have seen, nothing

CG{1998/1



A practical implementation of the timing attack 15

signi�cant is produced afterwards). Therefore, any method allowing Eve to
guess a part of the key before carrying out the attack or to deduce the last
bits once the �rst ones are know can dramatically improve performances.

Consider for example the frequent case where:

� the public exponent e = 3,

� the secret exponent k is calculated such that k �e = 1 mod (p�1)(q�1)
(the important point is that we do not use the lcm(p� 1; q � 1)),

� p and q have the same l-bit length.

We have:

k � 3� s(p� 1)(q � 1) = 1; with s = 1 or 2;

k � 3 =

�
1 + 1[n� (p+ q) + 1]
1 + 2[n� (p+ q) + 1]

k =

�
[n� (p+ q) + 2]=3
[2n� 2(p+ q) + 2]=3

Because the length of n is twice the length of p and q, there is a great
probability that the l � 3 most signi�cant bits (depending on the length of
the propagation of a possible carry due to the subtraction by p + q) of the
key k are the l� 3 �rst bits of n=3. Eve can thus start the attack at the �rst
unknown bit.

8 Other targets and further research

The attack could easily be extended against some variants of the square and
multiply algorithm. The implementation of RSAREF, for example, processes
the bits two by two, performing two square followed by a multiplication by
1, m, m2 or m3, depending on whether the bits are 00, 01, 10 or 11. The
attack could quite easily be adapted to this case.

Other cryptosystems involving a modular exponentiation are of course
subject to the same attack. Consider for example the Di�e-Hellman key
exchange protocol: to build a common secret parameter, Alice and Bob
exchange the values gx and gy, where g is public and x, y are secret values,
known only by Alice and Bob, respectively, but often kept constant. The
common parameter, that only Alice and Bob can compute, is obtained by
computing (gy)x or (gx)y.

CG{1998/1



A practical implementation of the timing attack 16

Now, suppose Alice wants to discover Bob's secret parameter y. She
chooses several random values x1; : : : ; xN , sends the values gxi (e.g. pre-
tending to be someone di�erent each time) and collects the corresponding
response times (which can be, for example if Bob is a smart card, measured
with very good accurancy). Clearly, the conditions of our attack are full�lled.
As a typical value for a Di�e-Hellman key size is 160 bits, a few thousand
exchanges would su�ce to discover the secret key.

Other protocol could probably be attacked in the same way. It must
however be noted that the basis of the exponentiation (i.e., the parameter x
in xk) has to be known for the attack to be carried out as described here.
Therefore, systems such as DSS, . . . seem less vulnerable, although a more
detailed study should have to be carried out.

One important weakness of our attack is that it cannot be carried out
against systems using the Chinese Remainder Theorem for modular expo-
nentiation. Kocher [Koc96] proposes some leads for a timing attack of the
CRT, but it is not known whether such an attack would be practicable.

When developing the attack, we faced many di�culties on building a
rigorous mathematical model explaining why things work. In fact, we en-
countered more than once the strange situation of building a model which
should reveal some information, implementing it, and discovering that the
system behaves di�erently than expected, although the information is well

revealed. It seems that other researchers interested in the timing attack have
faced the same problems with theory. A complete theoretical model would
of course be useful, although we believe it is a real challenge.

9 Countermeasures

Three countermeasures come to mind when we try to protect ourselves against
the above attack.

The �rst one is to modify the Montgomery algorithm so that an addi-
tional subtraction is always carried out, even if its result is simply discarded
afterwards. This modi�cation is very easy to carry out, does not decrease
the performances very much and clearly defeats this attack. However, it can-
not be guaranteed that it makes the system immune to any type of timing
attack, only against those which exploit the reduction of the multiplication
algorithm.

Another countermeasure, suggested by [Koc96], would be to use some
blinding: before computing the modular exponentiation, choose a random

CG{1998/1



A practical implementation of the timing attack 17

pairyy (vi; vf) such that v�1

f = vei ; multiply the message by vi (mod n) and
multiply back the output by vf (mod n) to obtain the searched result. As
Eve can no more simulate the internal computations, she can hardly exploit
her knowledge of the timing measurements.

It is worth noting that the attack is quite general, in the sense that it was
not directed against the peculiar case of a Montgomery multiplication, but
against the fact that this algorithm is constant-time, except for a potential
�nal reduction. This means that the use of other modular multiplication
schemes, such as the standard versions of the Barrett or Quisquater algo-
rithms, would not protect the system against our timing attack.

However, Dhem [Dhe98] recently proposed an improvement of these mul-
tiplications schemes, allowing several modular multiplications to be chained
with only one extra reduction being performed after the last multiplication.
This scheme seems to be especially interesting here, as it would suppress our
attack's main target.

10 Conclusion

This paper shows that the timing attack represents a practical, important
threat against cryptosystems implementations, namely in the case of a smart
card, where the attacker can quite easily collect large amount of message
decryptions.

It is important to note that the attack is quite general, in the sense that it
does not require a very detailed knowledge of the implementation: all we have
to know, besides some general hardware characteristics such as the word size,
is that the modular exponentiation is done using the square and multiply and
Montgomery algorithm. Computation details, timings necessary for speci�c
operations, . . . , are not necessary. This is an important improvement on
Kocher's attack.

As shown in previous section, the attack is also general in the sense that
it could have been directed against other classical modular multiplication
schemes, if they are used in there standard form and not with Dhem's im-
provement.

In view of these results, the design of the CASCADE smart card has
been modi�ed to make it immune against the timing attack. It is however
our belief that few smart cards take care of this, and that similar attacks
could be successfully conducted against many of them.

yy[Koc96] proposes a way to generate such pairs at a reasonable cost.

CG{1998/1



A practical implementation of the timing attack 18

11 Acknowledgements

The authors wish to thank Gael Hachez for usefull comments and technical
help, and HP Labs, Bristol, UK for the grant of the PCs which were used to
carry out the attack.

References

[Cas] Cascade (Chip Architecture for Smart CArds and portable intelli-
gent DEvices). Project funded by the European Community, see
http://www.dice.ucl.ac.be/crypto/cascade.

[Dhe98] J.F. Dhem. Design of an e�cient public-key cryptographic library

for RISC-based smart cards. PhD thesis, Universit�e catholique de
Louvain - UCL Crypto Group - Laboratoire de micro�electronique
(DICE), May 1998.

[Koc96] P. Kocher. Timing attacks on implementations of Di�e-Hellman,
RSA, DSS, and other systems. In N. Koblitz, editor, Advances in
Cryptology - CRYPTO '96, Santa Barbara, California, volume 1109
of LNCS, pages 104{113. Springer, 1996.

[Ler98] P.-A. Leroux. Timing cryptanalysis : Breaking security protocols by
measuring transaction times. Master's thesis, Universit�e catholique
de Louvain - UCL Crypto Group, June 1998.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. In Proc. Commu-

nications of the ACM, volume 21, pages 120{126. ACM, February
1978.

[Sie56] S. Siegel. Nonparametric Statistics. McGraw-Hill, 1956.

[Wil98] J.-L. Willems. Timing attack of secured devices (in French). Mas-
ter's thesis, Universit�e catholique de Louvain - UCL Crypto Group,
June 1998.

CG{1998/1


