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Abstract

This short survey discusses the role of regularization in current deep learning re-
search. Up till now, dropout remains the most popular choice of all deep neural
network regularization techniques, and is what this survey is centered around. We
first give a general introduction and interpretation of dropout (Section 1), followed
by some follow-up works which either improve speed or offer analysis (Section
2). Then methods other than dropout, namely DropConnect and Batch Normal-
ization, are introduced (Section 3) to provide comparison and contrast. Finally the
necessity of regularization is argued (Section 4). This is the second of the four
short surveys.

1 Dropout

Regularization is important for deep neural networks, because they usually have millions of param-
eters to learn, and given the limited training data, overfitting is quite likely to happen. Dropout [1]
stood out as a simple yet effective regularization technique, and first attracted major attention when
it greatly alleviated the overfitting problem of AlexNet [2], the ILSVRC 2012 winner.

1.1 Formulation and Intuition

The idea of dropout is quite simple. It introduces stochasticity into the neural network by (tem-
porarily) dropping random units out, along with all its incoming and outgoing connections. This is
equivalent to sampling a “thinned” network from the complete architecture. Concretely:

• During each training iteration, drop each unit in a layer out with probability p (usually set
to 0.5, which means randomly dropping half of the units in the current layer).

• During testing, multiply all the outgoing weights of the units by p and make final prediction
using all the units.

The intuition behind dropout is as follows. If the capacity of the network is much larger than the
data it is representing, then overfitting is likely to happen. In terms of weights, this could mean that
a large number of weights have learned to “cooperate” or “co-adapt” to fit the data point. These
complex co-adaptations could go wrong on the new test data. On the other hand, by randomly
dropping half of the units, a unit is forced to work with different “co-workers” during each iteration
of training. As a result, it is likely to learn something that is individually useful.

But after learning is done, we no longer want to use the “thinned” networks and would like to utilize
all the knowledge that the network has learned. Since the weights of the next layer is learned when
we drop out half of the units in the current layer, if we fix the outgoing weights of all the units, then
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Figure 1: Left: Dropout training; Right: Dropout prediction

the “intensity” that is fed into the next layer is twice as much, which will probably make the learned
weights of the next layer useless. Therefore it makes sense to half the outgoing weights of all the
units in the current layer during testing.

We now interpret dropout in terms of model averaging, which is a more formal explanation. By
randomly omitting each hidden unit with probability 0.5, we are randomly sampling from 2H dif-
ferent architectures, where H is the number of hidden units in the hidden layer. This is a very
large number, so only a few of these models ever get trained, and very likely that they only get one
training example. All these architectures share weights, which means every model is very strongly
regularized.

Since all these architectures are thin and receive very little training examples, they are expected to
perform poorly when making individual predictions. However the performance will be much better
when we average the predictions of these exponentially many models. It turns out that by halving
the outgoing weights of the units during test time, we are computing the geometric mean of the
predictions of all 2H models. This suggests that dropout is in fact a very efficient way of doing
model averaging.

1.2 Mathematical Interpretation

We now try to interpret dropout more formally using equations. Much of the analysis in this subsec-
tion comes from [3]. We focus on the model averaging analysis of dropout.

We first consider the case of single layer of linear units. The activations are given by

Si(I) =

n∑
j=1

wijIj (1)

Applying dropout gives

Si(I) =

n∑
j=1

wijδjIj (2)

and taking expectation

E(Si) =

n∑
j=1

wijpjIj (3)

So dropout computes the expectation exactly. Similar conclusions hold for deep linear networks.

We then consider the case of logistic units. The activations are given by O = σ(S). There are 2n

possible sub-networks indexed by N . For a fixed input I , each sub-network produces a linear value
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S(N, I) and a final output value ON = σ(S(N, I)). In the uniform case, the geometric mean of the
outputs and complementary outputs are given by

G =
∏
N

O
1/2n

N G′ =
∏
N

(1−ON )1/2
n

(4)

respectively. The normalized geometric mean (NGM) is defined by

NGM =
G

G+G′
(5)

and we can show that

NGM(σ(S)) = σ(E(S)) = σ(

∑
N S(N, I)

2n
) (6)

So for logistic units, dropout computes the normalized geometric mean of individual predictions
exactly. This is also true for a single layer of logistic units, but unfortunately it is no longer true for
deep neural networks, where

E(Ohi ) ≈ NGM(Ohi ) = σ(E(Shi )) ≈Wh
i (7)

Nevertheless, we can still show that bothG andNGM are good approximations ofE(Ohi ) andWh
i ,

and that the deviations are approximately Gaussians with zero mean and small standard deviations.
In addition, these deviations act like noise and cancel each other to some extent, preventing the error
accumulation across layers [3].

2 Following Dropout

2.1 Fast Dropout

[4] speeds up dropout training by interpreting dropout as Monte Carlo approximation. Suppose
zi ∼ Bernoulli(pi) for i = 1, ...,m. Then Y (z) =

∑m
i=1 wixizi can be seen as a Monte Carlo

approximation to Ez[Y (z)]. From central limit theorem, Y (z) tends to a normal distribution as
m→∞. Therefore we can describe the distribution of Y (z) with a Gaussian

S = Ez[Y (z)] =
√
V ar[Y (z)]ε = µs + σsε (8)

where ε ∼ N(0, 1). So instead of drawing m Bernoulli random variables, we only need to sample
from one Gaussian distribution to do the same job.

While the forward pass of the network is straightforward, the implementation of training becomes
quite complicated. Therefore, it is suggested that one could use fast dropout at test time only.

2.2 Dropout as Adaptive Regularization

[5] tries to explain dropout as a form of regularization. The paper primarily studies the generalized
linear models (GLMs)

pβ(y|x) = h(y) exp{yx · β −A(x · β)} (9)
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Dropout is a way of adding noise to the feature. Applying MLE to the parameters yields the regu-
larization term

R(β) =

n∑
i=1

Eξ[A(x̃i · β)]−A(xi · β) (10)

where A is the partition function and x̃i is the noisy feature. Further, by taking Taylor expansion,
this term can be approximated by

Rq(β) =
1

2

n∑
i=1

A′′(xi · β)V arξ[x̃i · β] (11)

For different noise type and function class, this term changes into different forms, and the main
result is summarized in the following table.

Figure 2: Form of different regularization schemes

The main message is that instead of penalizing each feature equally, rare but highly discriminative
features receive little penalty in dropout, which suggests that it is a more advanced form of regular-
ization. The limitation of this paper is that the focus is mainly upon GLMs, not the highly non-linear
deep neural networks.

2.3 Dropout as Bayesian Approximation

Deep learning is usually happy with a point estimation, which does not provide information on
model uncertainty. Bayesian models, on the other hand, are able to capture richer information, but
are usually computationally prohibitive. [6] argues that dropout, when performed during test time,
offers insight into the model uncertainty of the deep neural network. Specifically, the variance of the
label prediction is

V ar(y) = τ−1ID +
1

T

T∑
t=1

yTt yt − E(y)TE(y) (12)

which equals the sample variance of T stochastic forward passes through the neural network plus
the inverse model precision τ , which is a constant that is computable. Therefore, dropout is not only
useful during training, but also for testing.

3 Besides Dropout

3.1 DropConnect

Instead of randomly dropping the activation out, it is quite natural to think about randomly dropping
the connection/weights out. This leads to the idea of DropConnect [7], which is also a form of neural
network regularization.

In Dropout, during each training iteration we have a different “thinned” network architecture, but
all the connections within this “thinned” architecture are preserved. In DropConnect, each neuron is
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likely to be always active because it usually has many incoming connections. However during each
training iteration, each unit is receiving information from different sets of lower level neurons.

At inference time, instead of multiplying each outgoing weight by p, DropConnect needs to sample
from a Gaussian and then average. During training, the number of Bernoulli random variables to
be drawn is likely to be much larger than Dropout (for a fully connected layer with m input and n
output, mn vs m + n). Therefore, although [7] showed slightly better performance over Dropout,
DropConnect is a more cumbersome technique than Dropout.

3.2 Batch Normalization

Batch Normalization [8] is emerging as a favorable option over dropout, as it is used in all the
state-of-the-art models on ILSVRC [9] [10] [11].

Batch Normalization builds on the idea that learning is easier when the distribution of the inputs is
fixed. It has long been known that network training converges faster if the inputs are normalized and
decorrelated [12] [13], and since the next layer can be seen as a network built upon the activations
of the current layer, we should try to fix the activation distribution of all the intermediate layers.

During each training iteration, we only observe a mini-batch, which prohibits computing the nor-
malization exactly (which is computationally expensive and requires access to the entire training
set). So the idea is treat the scaling factor γ and bias β as trainable parameters:

1. µB = 1
m

∑m
i=1 xi (mini-batch mean)

2. σ2
B = 1

m

∑m
i=1(xi − µb)2 (mini-batch variance)

3. x̂i = xi−µB√
σ2
B+ε

(normalization)

4. yi = γx̂i + β = BNγ,β(xi) (scale and shift)

It can be shown that the cost function is differentiable with respect to γ and β. BN allows much
higher learning rate, less careful initialization, and acts as a regularizer.

4 Conclusion

Regularization is an important component in deep learning research. Since the recent resurgence
of deep learning, dropout has been the most common choice due to its effectiveness and simplicity,
although in the past year Batch Normalization is starting to draw much attention.

We know overfitting happens when the number of trainable parameters is much larger than the
amount of data. So some people may argue that when we have enough data to fit into current models,
we will no longer need these annoying regularization techniques. But at that time, what we should
do is to increase the capacity of the network, and we will need regularization again. This comes
back to the discussion of depth [14]. Although deep models may not be utilizing all its capacity, so
is the case with human brain, which clearly has huge numbers of parameters compared to the data
that it receives.
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