I (d) Given x_1, x_2, \ldots, x_n is a set. Define $x_1 \cdot \cdots \cdot x_n$ in S_n: $x_1 + x_2 + \cdots + x_n = S$. For every subset y indicated by y_1, y_2, \ldots, y_n, check whether $x_1 + x_2 + \cdots + x_n = S$. If one of the tests succeeds, respond "yes" else respond "no". In half, there are 2^{n-1} subsets. Hence the algo. terminates.

One way to generate the subsets of $\{1, 2, \ldots, n\}$ is to represent each subset by a binary no. with n bits in which a 1 indicates that the corresponding element is present. For example, 1011 indicates the set $\{4, 2, 1\}$.

(h) Let $M_x \neq \emptyset \Rightarrow L(M) \neq \emptyset$?

Method 1: If M_x have S states. If M_x accepts any string, it must accept a string of length $< S$. Let the shortest string, $x_i \geq S$.

Proof: If M_x accepts $x_i \geq S$. Let the In the sequence of states visited, S must exist a repetition. If we delete the substring corresponding to any such repetition, the shorter string must be accepted too - contradicting the minimality of M_x.

Then check whether M_x accepts at least one of strings in $\{v^0, v^1, v^2, \ldots, v^S\}$, i.e. attack all the strings of length $< S$. If M_x respond "yes", reject. If "no", accept.

Method 2: Compute all the states of M that can be reached from its initial state by a process analogous to the spread of a contagion. Technically
It is known as breadth-first scan.

Start with the set \(\{q_0\} \).

Let any stage let the set be \(A \).

For every \(q \in A \), if there is a transition to state \(q' \), include \(q' \) in \(A \).

If this process increases the size of \(A \), repeat the process.

Else, the set \(A \) gives all the states that can be reached from \(\{q_0\} \). Since the FA has \(s \) states and since repetition increases the size of the set, the max. number of repetitions is \(s-1 \). Hence the process is finite.

Check whether the resulting set \(A \) contains at least one final state. If so, respond yes. If not, respond no and halt.

(i) Let \(M_1 \) and \(M_2 \) have \(s_1 \) and \(s_2 \) states, respectively.

Method 1: If \(M_1 \) and \(M_2 \) accepts some common strings,

then they must accept a string of length \(\leq s_1 s_2 \).

Prove it directly or reduce to a simple extension of the above proof.

Then check whether some string of length \(\leq s_1 s_2 \) is accepted by both \(M_1 \) and \(M_2 \).

Method 2: Construct an FA for the language

\(L(M_1) \cap L(M_2) \).

This involves...
This involves running M_1 and M_2 in parallel; i.e. keeping track states of the form (q, q') in which $q
eq q'$ are states of M_1 and M_2, respectively. At the end, check that both the states are final states.

On the intersection as for, apply the methods

1. **Problem (b)**

 (b) $M_1, M_2, L(M_1) = L(M_2)$?

 We show $BTHP \leq_m BTHP$.

 Typical Instance

 Given M_i, we want to construct M_1 and M_2 s.t. M halts on BT iff $L(M_1) = L(M_2)$.

 Construct M_1 s.t. $L(M_1) = \{a, b^*\}$. — Easy.

 M_2: On any string of a's and b's, M_2 simulates M on BT. If M halts, then M_2 accepts x.

 Thus if M halts on BT then $L(M_2) = \{a, b^*\}$.

 If M doesn't halt on BT then $L(M_2) = \phi$.

 Hence M halts on BT iff $L(M_1) = L(M_2)$.

 Note the transformation of $L(M)$ to $[M, M']$ is a computable function.
I.(e) CFGs G_1, G_2 in $L(G_1) \cap L(G_2) \neq \emptyset$

we show that PCP \leq_m this part

Typical instances $(x_1,y_1), \ldots, (x_m, y_m) \in G_1, G_2$

\begin{align*}
E & = (x_1, y_1), \ldots, (x_m, y_m)
\end{align*}

we want to specify $G_1 \& G_2$ s.t. E has a solution iff $L(G_1) \cap L(G_2) \neq \emptyset$

\begin{align*}
G_1 : S & \rightarrow \alpha, S \alpha, \ldots, \mu S \kappa \\
G_2 : S & \rightarrow \gamma, S \gamma, \ldots, \nu S \kappa
\end{align*}

If $x_1, \ldots, x_m = y_1, \ldots, y_m$

then $E \in G_1 : S \rightarrow \ast x_1, \ast x_m, \ast \gamma_1, \ldots, \ast \gamma_m, \ast \kappa_1, \ldots, \ast \kappa_m$

in $G_2 : S \rightarrow \ast y_1, \ast y_m, \ast \gamma_1, \ldots, \ast \gamma_m, \ast \kappa_1, \ldots, \ast \kappa_m$

Hence there is string in \(L(G_1) \cap L(G_2)\).

Let \(G_1\) that is a common string \(z\), then \(z\) is of the form \(u w, u \in \Sigma^*, w \in \Sigma^*\).

\begin{align*}
\forall w = \gamma_1 \cdots \gamma_m \text{ then } u = x_1, x_m \text{ since } z \in L(G_1)
\end{align*}

\begin{align*}
\forall U = \gamma_1 \cdots \gamma_m \text{ since } z \in L(G_2)
\end{align*}

Hence $x_1, \ldots, x_m = y_1, \ldots, y_m$

Note that the transformation from E to $G_1 \& G_2$

is a computable function.
III. Will show $\text{BTHP} \leq_m \text{this problem}$

Typical input $[M]$.

Given $[M]$, we transform it $[M']$ as

$TM \; M$ halts on BT if $TM \; M'$ computes $f(n) = n^2$.

M': Given any n, on a separate part of the tape, M' simulates M. If M halts, then M' erases the computation part of the tape, then computes n^2 and halts.

M halts on $BT \Rightarrow M'$ computes $f(n) = n^2$.

M doesn't halt on $BT \Rightarrow M'$ computes $f(n) = \text{undefined}$ for every n.

Hence our goal is achieved.

Note also that the transformation from $[M]$ to $[M']$ is a computable function.