$L_1 = \{a^i b^j a^k b^l \mid i,j,k,l \geq 1\}$

The matching indicates the proper matchings:

- a, e, VA
- b, e, VB
- a, B
- b, λ, VB
- a, B, a
- b, A, VB
- a, B, a
- b, λ, VB
- a, B, a
- b, λ, VB

$L_{10} = \{x \in R \mid a b a \text{ is a substring of } x\}$

a, z^k relationship via the pushdown, substring via the finite control.

$L_8 = \{x \mid \#a = \#_e, \text{ last symbol of } x = b \}$

- $\#a = \#_e$ by pushdown, last symbol by the finite control.

Let $A_a = \{a, A, VA \}$ and $A_b = \{b, A, VB \}$

\quad \quad \quad \quad \quad \quad

$L_2 = \{a^i b^j a^k b^l \mid i, j, k, l \geq 1, \text{i.e. } i = k \text{ or } j = l\}$

Guess $i = k$ and $j = l$ and verify.
$L_3 = \{ x \mid x = x^k \}$

$x = x^k \iff \begin{cases} (\exists y \in \Sigma^*, e \in \Sigma) \left(x = y y^R \wedge x = y cy^R \right) \\ \end{cases}$

On the y part push, on y^R \uparrow match \times pop.

Push x, guess \times through away x part, then match. After the pd becomes empty throw away the y part.

$F_{13} = \{ x cy \mid x^k$ is a substring of $y^k \}$

$y = u z^k v$

For any k, let $z = a^k b^k c^k$. Note that $z \in L \delta$

For any way of writing $d^k e^{k+1} f^k g^k = uu w w x y z^t$. If $w = k \wedge \varepsilon = 0$.

Since $|w w z| \leq k$, wux and hence ux cannot contain all (b's.

If ux does not contain c's then $u v w y^k \notin L$ since $i < j < k$ cannot be maintained.

If ux does contain c's then $u v w y^k \notin L$ since $i < j < k$ cannot be maintained.

Hence L is not an npda lang.
(m) \(L = \{ x \mid \# x = \# z^2 \geq \# x^2 \} \)

Let \(S = \{ s \mid \text{all} b, c \} \). As before, \(V \) cannot contain all \(b, c \).

If \(V \) does not contain \(c \)'s, then \(2u \not\in V \) \# \(y \# L \) since \(d \)'s and/or \(b \)'s will be reduced \(\# y \leq \# z \), \(\# y \geq \# z \) cannot hold.

If \(V \) does not contain \(a \)'s, then \(2u \not\in V \) \# \(y \# L \) since \(\# y = \# x^2 \) and/or \(\# y \geq \# z \) cannot hold.

Hence \(L \) is not an np-hard lang.

II (a) \(\{ x \mid \# x = \# b = \# c \} \).

Repeatedly cross off one \(a \), one \(b \), one \(c \).

(c) \(\{ a_i b^j c^k \mid i, j \geq 1, i = j \} \) and \((k = i \vee k = 2i) \)

Check from \(L \) \(a_i b^j c^k \), check \(i = j \); then \(\# = \# b \) or \(\# = \# + \# c \).

See next page.