I \quad L_1 = \{ a^i b^j c^k \mid i \geq j \geq k \}.

For any value \(k \), let \(z = a^k b^k c^k \). Note \(z \in L_1 \) and \(|z| = k^2 \).

For any choice \(a^k b^k = uvw \), let \(|u| \leq k \) and \(|v| > 0 \). \(u \) must consist of only a's since \(|uv| = k \). Let \(u = a^l \), \(l \leq k \).

Then \(u v^2 w = a^{k+l} b^k c^k \notin L_1 \). Hence \(L_1 \) is not an FA language.

\[L_{15} = \{ a^i b^j c^k \mid i, j, k \geq 1, \frac{i}{j} = \frac{k}{i} \} \quad \text{(Note:} \quad z \notin L_{15} \).

For any value \(k \), let \(z = a^k b^k c^k \).

Let \(x, y \in L_{15} \). As before, let \(v = a^l \), \(1 \leq l \leq k \). Then \(u v^i w = a^{k+1+i} b^{k+i} c^{k+i} \).

If \(i = 1 + \frac{k+1}{l} \), then \(u v^i w \notin L_{15} \). Hence \(L_{15} \) is not an FA language.

\[L_{26} = \{ z \mid z \in L_6 \} \quad \text{where} \quad z \text{ is divisible by } 6^2 \).

For any \(k \), let \(z = b^k c^k \). Note \(z \in L_{26} \) and \(|z| \geq k \).

As before, let \(u v = a^l \), \(1 \leq l \leq k \). Then \(u v^2 w = a^{k+1} b^k c^k \).

Hence \(L_{26} \) is not an FA language.

II \quad L_{10} = \{ \text{\#a, \#b, \#c contained exactly once or at least two more times} \}.

Guess the occurrences and verify.
\(L_n = \{ x \mid (xy)_n \text{ s.t. } \# y = abn \geq \# y \text{ is even} \} \)

Guess the occurrence of \(ab \) and verify.

\[R_3 = (ab + ba)^* aa + aba. \]

Systematically:

\(ab \):

\(ab + ba \):

\((ab + ba)^* \):

\((ab + ba)^*aa \):

etc.

\[R_{10} = (0(01 + 10)^* 1 + (1 + 10)^*) \]
\[R_{13} = \emptyset (0^+)^* (100 + 10^+1) \]

There are no paths from A to C going through B. Hence, B can be removed. Alternatively, removing B by the standard procedure adds no additional labels.

Here: \(N(b) \rightarrow A \rightarrow B \rightarrow C \)

Reg. exp: \(a(a+b) \)

Through D: \((aa+(a+a(a+b))b)(a+b)^*b \) let it \(\in R \).

Through E: \((a+a(a+b))b(a+b)^*a \) let it \(\in R' \).

Then: \(R + R' \)

Alternatively, let delete B, D, E one after the other.
\[(e)\]

\[R_1 = (a+b) b (b + a a^* b (a+b) b^*)\]

\[R_2 = (a+b) b b^* a (a+b)(a+b) b^* b\]

Finally: \[R_1 + R_2\]