I. (10 pts.) Design a context-free grammar for the language
\(\{xx^Ryy^R \mid x, y \in \{a, b\}^+, abb \text{ is a substring of } x, \text{ and } |y| \text{ is odd} \} \)

\[
S \rightarrow S_1 S_2 \\
S_1 \rightarrow a S_2 a | b S_1 b | a a | b b \\
S_2 \rightarrow a S_2 a | b S_2 b \\
S_1 \rightarrow a S_1 a | b S_1 b \\
x \rightarrow a x a | b x b | \epsilon
\]

* I was not planning to write solutions to these problems. But the TA & a couple of students in the class to post the solutions to these problems.

4/15/2013
II. (10 pts.) Establish the decidability of one of the following problems by designing an appropriate algorithm.

- Given a CFG \(G \), is there an \(x \in L(G) \) such that \(|x| \) is even?
- Given \([M_1] \) and \([M_2] \), \(M_1 \) and \(M_2 \) being DFA language recognizers, is \(L(M_1) \cap L(M_2) \) an infinite set?

To simplify the description, we assume that the CFG is in chomsky normal form. But the proof can be extended to any form. For each nonterminal \(A \), we create \(A \rightarrow \alpha \) and we create a set \(\Delta \) of

\[
\begin{align*}
A \rightarrow \alpha & \quad \text{if } \alpha \text{ is even, and} \\
A \rightarrow \beta & \quad \text{if } \alpha \text{ is odd.}
\end{align*}
\]

Initially \(\Delta \) is empty.

For each \(A \rightarrow \alpha \), add \(A \rightarrow \alpha \) to \(\Delta \).

For each \(A \rightarrow \beta \), add \(A \rightarrow \beta \) to \(\Delta \).

Repeat until the size of \(\Delta \) does not increase

For each \(A \rightarrow BC \), and for each \(\text{ev in } \Delta \implies \text{add } A \rightarrow AB \),

\(\text{ev in } \Delta \implies \text{add } A \rightarrow CB \).

Since the max size of \(\Delta \) is \(2N \) if \(N \) is the number of nonterminals, the process stops in a finite number of steps.

Finally check whether \(\text{ev in } \Delta \), if so output yes, else output no.

Claim: If \(M \) and \(M_2 \) have \(2 \) and \(2 \) states, then \(L(M_1) \cap L(M_2) \) is infinite if \(M_1 \) and \(M_2 \) accept a string \(x \) s.t. \(3 \leq |x| \leq 23 \).

Thus, check whether a string of length in the interval \([3, 23] \) is accepted by both \(M \) and \(M_2 \).

An additional sheet is attached.
If \(M_1, M_2 \) accept a string of length in \([5, 23]\), let one such string be \(a_1 a_2 \ldots a_L \) s.t. \(5 \leq L \leq 23 \). Let the pairs of states reached by \(M_1, M_2 \) on this string be \((P_0, Q_0), (P_1, Q_1), \ldots, (P_k, Q_k)\). Up to \(M_1, M_2 \) and \(Q_2 \) for \(M_2 \), since there are only 3, \(M_2 \) distinct pairs, \(a_j \) the pairs are equal. Let they be \((P_i, Q_i) \equiv (P_j, Q_j) \forall \) the string. Then \(a_j \ldots a_l, a_{l+1}, \ldots, a_k \), \(k \geq 0 \), are accepted by both \(M_1, M_2 \). This is a set of infinite strings.

If \(L(M_1) \subset L(M_2) \) is an infinite set, it must contain a string of length \(\geq 38 \). Let a shortest such string be \(a_1 \ldots a_L \). If \(L \leq 23 \), we are done.

If \(L > 23 \), track the pairs as above and cut off a substring of length \(\leq 3, 13 \) resulting in a shorter string of length \(\geq 3 \) that is accepted. This violates the minimality assumption.
III. (10 pts.) Design a Turing machine for computing the following function.

\[f(x, y, z) = \begin{cases}
 x + (y - z) & \text{if } y \geq z \\
 x & \text{otherwise}
\end{cases} \]

I am skipping this simple problem which almost every student got it correct.
IV. (10 pts.) Solve one of the following problems.

- Prove the undecidability of the following problem. Given CFGs G_1 and G_2, is there an $x \in L(G_1) \cap (L(G_2))^R$, and $|x|$ is even? (Hint: Reduce the Post Correspondence Problem to this problem.

- Recall that the Uniform Halting Problem (UHP) asks whether a given Turing machine halts on every input. Reduce the UHP to the problem of testing whether a given TM computes the identity function; i.e., the function f s.t. $f(x) = x$ for every x.

\[\text{Typical } E = \langle x, y, z, i \rangle, \quad \text{and } \quad \langle x, y, z \rangle \quad \text{ind.} \]

Given E, we want to transform it (G_1, G_2) s.t. E has a solution iff $\exists x \in L(G_1) \cap (L(G_2))^R$ s.t. $|x|$ is even.

\[G_1 \quad \text{S} \rightarrow x_1 s_1 | x_2 s_2 | x_3 s_3 | \ldots | x_n s_n | x_1 x_2 x_3 \ldots x_n \]

\[G_2 \quad \text{S} \rightarrow y_1 s_1 | y_2 s_2 | y_3 s_3 | \ldots | y_n s_n | y_1 y_2 y_3 \ldots y_n \]

It is easily seen that $x_i = y_i \forall i \iff x_1 x_2 x_3 \ldots x_n \in L(G_1) \cap (L(G_2))^R$.

Note also that $|x_1 x_2 x_3 \ldots x_n| \in L(G_1) \cap (L(G_2))^R$ is of even length.

Note that the transformation from E to (G_1, G_2) is computable.

\[\text{Typical } [M] \quad \langle M' \rangle \quad \text{ind.} \]

Transform $[M]$ to $[M']$ s.t. TM M' halts on every input x iff $x \in L(M)$.

TM M' computes $f(x) = x$ for every x on a separate pad of tape.

On any input x, M' simulates M on input x.

M halts, M' cancels the computation & leaves x on tape.

The rest is easy.