Topics for the Final Examination

- Design of automata and grammars; regular expressions
- Computability problems
- Decision problems
- Undecidability via reduction
- Recursive and Recursively Enumerable sets
- P and NP algorithms
- NP-completeness via Polynomial Time Computable Reduction
- No pumping lemmas, no congruence lemmas, and no diagonalizations. You will be asked to prove undecidability via reduction and NP-completeness via polynomial time reduction.
III. Prove that the following problem is computable.

\[f(x, y) = \begin{cases}
1 & \text{if there exist TMs } M_1, M_2 \text{ s.t. } x = [M_1], \ y = [M_2], \ \text{and } L(M_1) \cap L(M_2) \neq \emptyset \\
\text{undefined} & \text{otherwise}
\end{cases} \]

- Check whether \(x \neq y \) are codes of TMs. If not go into a loop, i.e., \(f(x, y) \) is undefined.
- If no, let \(x = [M_1], \ y = [M_2] \).
- At any stage keep track of the sets of strings accepted by \(M_1 \) and \(M_2 \) up to that instant. Let \(L_i \) = \(2^i \). Initially, \(L_0 = L_1 = \emptyset \).
- At any stage \(i \), being in simulation of \(M_1, M_2 \) on input \(x \) (as a binary string). Simulate all the pending processes by one additional step. If an \(M_j \) accepts on input \(j \), include \(j \) in \(L_i \). Remove \((M_j, j)\) simulation process. Then check whether \(j \) is in the current \(L_{i+1} \). If so, output 1 and halt. Else, go to the next stage.

IV. Given TMs \(M_1, M_2, \ldots, M_n \), prove that the following set is recursively enumerable:

\[\{ x \mid \text{every } M_j \text{ halts on input } x \} \]

Function \(f \) keeps track of the number of TMs that have so far halted on any particular input. For example, if \(f(i) = k \) then all that stage \(k \) of the \(n \) TMs have halted on input \(x \).

- At any stage \(i \), start simulations of \(M_1, M_2, \ldots, M_n \) on input \(i \) as separate processes. Set \(f(i) = 0 \). Simulate all the running processes by one more step. If any \(M_j \) illegally halts on input \(i \), then remove this process \(x \) increment \(f(i) \) by 1. Then check whether \(f(i) = n \). If so, output 1. Go to stage \(i+1 \).
VII. Design a P algorithm for the following problem. Also, estimate the speed of the algorithm.

Given a digraph \(G \), a vertex \(u \), and a value \(k \), are there \(k \) distinct vertices \(v_1, v_2, \ldots, v_k \) s.t. for every \(i \in \{1, \ldots, k\} \), there is a path from \(u \) to \(v_i \) and there is a path from \(v_i \) to \(u \)?

A similar problem is done in class this year (2013).

VIII. Design an NP algorithm for the following problem. Prove its correctness and estimate its speed.

Given \(n \) digraphs, \(G_1, G_2, \ldots, G_n \), each having \(n \) vertices, does there exist a \(k \geq n/2 \) s.t. at least \(n/2 \) of the digraphs contain a simple cycle of length \(k \)?

\[
\text{Guess } i_1, i_2, \ldots, i_k. \quad \text{Verify } i_1 < i_2 < \ldots < i_k \text{ and } k \geq n/2.
\]

For each \(ij \): guess \(k \) vertices \(v_{i_1}, \ldots, v_{i_k} \). Verify that
\(v_{i_1}, \ldots, v_{i_k} \) form a simple cycle in \(G_{ij} \).

Correctness: easy.

Speed: Testing the distinctness of \(v_i \), \(v_j \) quickly requires \(O(k^2) \) steps; overall \(O(n^3) \).
All the subproblems carry equal weight.

I. Design a nondeterministic pda for the language:
\[\{xyycz | x, y, z \in \{a, b\}^*, y = x^R \text{ or } (z \neq y^R \text{ and } \#_awz \text{ is an odd integer})\}. \]
III. Prove that the following problem is decidable.

1. Given $[M_1]$ and $[M_2]$, M_1 a dfa and M_2 a dlba, is $L(M_1)$ a finite set and $L(M_1) \cap L(M_2) \neq \emptyset$?

Testing $L(M)$ is finite set.

Minimizing the number of states of M. The only property we need is that there are no useless states.

Let M have s states.

Claim: $L(M)$ is finite if M doesn't accept any string of length in the range $[1, 2^s]$.

Now generate all strings of length 1, then $x1$, then $x2$, ..., then $x2^s$ to check whether at least one of them is accepted by M.

So $L(M)$ is not finite. If not, $L(M)$ is finite.

Knowing $L(M)$ is finite, to test $L(M) \cap L(M_2) \neq \emptyset$.

Let M_2 have t states and t tape symbols. We have shown that if M_2 accepts a string of length n, then it must accept within $3n^2$ steps. So any given string can be tested for acceptance by M_2.

Now we generate all strings of length 1, then length 2, then length 3, ..., then length 2^s. For each string, test whether it is accepted by both M_1 and M_2. If there is such a string output 'yes', else output 'no' at halt.
V. Prove the undecidability of the following problem.

1. Given $[M_1], [M_2], [M_3]$, do there exist x_1, x_2, x_3 such that $x_1 < x_2 < x_3$ and for $i = 1, 2, 3$, Turing machine M_i halts on input x_i? (Hint: Make use of the undecidability of the blank tape halting problem.)

BTTP \leq_m this problem

Typically: $(M), [M_1], [M_2], [M_3]$

Given (M), we transform it to $(M), [M_1], [M_2], [M_3]$ by:

- TM M halts on B if there exist x_1, x_2, x_3 s.t. $x_1 < x_2 < x_3$
- M_i halts on x_i
- We choose $x_1 = 1, x_2 = 11, x_3 = 111$

- TM M_1: halts on input 1, $\not{\text{halts}}$ on any other input.
- TM M_2: halts on input 11 and $\not{\text{halts}}$ on any other input.
- TM M_3: $\not{\text{halts}}$ on any input other than 111. On input 111, it erases the input & simulates M on blank tape.

Note: that our goal is achieved.

Also, the transformation from (M) to $[M_1], [M_2], [M_3]$ is computable.
VII. Design a P algorithm for one of the following problems. Estimate its speed.

1. Given a directed graph G with n vertices, is there an ordering of its vertices into $v_{k_1}, v_{k_2}, \ldots, v_{k_n}$ such that for every $1 \leq i < j \leq n$ there is an edge from v_{k_i} to v_{k_j}?

2. Given an nfa M and a string x, is $x \in L(M)$? (Conversion of M into dfa is not possible since this can take an exponential number of steps.)

1. Let the adjacency matrix be A.
 Find an i s.t. the ith row is all 1's except $A(i,i)$.
 Make i to be k_1. Eliminate ith row and ith column.
 Repeat the process to find k_2, \ldots, k_n.
 Each iteration requires scanning all the entries of A once, i.e. $O(n^2)$ steps. Thus, done $O(n)$ times, overall also: $O(n^3)$ steps.

2. Let $x = a_1 a_2 \cdots a_n$.
 For each i, we compute S_i: the set of states M can reach on input $a_1 a_2 \cdots a_i$.
 Start with $S_0 = \{q_0\}$.
 Computation of S_{i+1}: For each $q \in S_i$, place all states from q on input a_{i+1}.
 Remove duplicates.
 At the end, check whether S_n contains a final state.
 Speed: $|S_i| \leq n$. From each state in S_i on input a_{i+1}, M can reach at most n states. So the number of steps needed to compute $S_{i+1} = O(n^3)$.
 Overall $O(n^3)$.

7