On Web Browsing Privacy in Anonymized NetFlows

S. E. Coull* M. P. Collinsf

*Johns Hopkins University
{coulls,cwright,fabian} @cs.jhu.edu

Abstract

Anonymization of network traces is widely viewed as a
necessary condition for releasing such data for research
purposes. For obvious privacy reasons, an important goal
of trace anonymization is to suppress the recovery of
web browsing activities. While several studies have ex-
amined the possibility of reconstructing web browsing
activities from anonymized packet-level traces, we ar-
gue that these approaches fail to account for a number
of challenges inherent in real-world network traffic, and
more so, are unlikely to be successful on coarser Net-
Flow logs. By contrast, we develop new approaches that
identify target web pages within anonymized NetFlow
data, and address many real-world challenges, such as
browser caching and session parsing. We evaluate the
effectiveness of our techniquesin identifying front pages
from the 50 most popular web sites on the Internet (as
ranked by alexa.com), in both a closed-world experiment
similar to that of earlier work and in tests with real net-
work flow logs. Our results show that certain types of
web pages with unique and complex structure remain
identifiable despite the use of state-of-the-art anonymiza-
tion techniques. The concerns raised herein pose athreat
to web browsing privacy insofar as the attacker can ap-
proximate the web browsing conditions represented in
the flow logs.

1 Introduction

Recently, significant emphasis has been placed on the
creation of anonymization systems to maintain the pri-
vacy of network data while simultaneously alowing
the data to be published to the research community
a large [23, 24, 17, 9, 22]. In genera, the goas
of anonymization are (i) to hide structural information
about the network on which the traceis collected, so that
disclosing the anonymized trace does not revea private
information about the security posture of that network,
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and (ii) to prevent the assembly of behavioral profilesfor
users on that network, such as the web sites they browse.

Our goal in this paper is to evaluate the strength of
current anonymization methodology in achieving goal
(ii). Specificaly, we focus on providing a redlistic as-
sessment of the feasibility of identifying individual web
pages within anonymized NetFlow logs [4]. Our work
distinguishesitself from prior work by operating on flow-
level data rather than packet traces, and by carefully
examining many of the practical concerns associated
with implementing such identification within real net-
work data. Previous work has focused on methods for
web page i dentification within encrypted or anonymized
packet trace data utilizing various packet-level features,
such as size information, which cannot be readily scaled
to flow-level data. Rather than assume the presence of
packet-level information, our work instead focuseson the
use of flow-level datafrom NetFlow logsto perform sim-
ilar identification. Since NetFlow data contains a small
subset of the features provided in packet traces, we are
able to provide a general method for identifying web
pages within both packet trace and NetFlow data. Also,
use of NetFlow data is becoming more commonplacein
network and security research [13, 21, 33, 5].

More importantly, our primary contribution is arigor-
ous experimental evaluation of the threat that web page
identification poses to anonymized data. Though pre-
vious work has provided evidence that such identifica-
tion is a threat, these evaluations do not take into ac-
count several significant issues(e.g., dynamic web pages,
browser caching, web session parsing, HT TP pipelining)
involved with the application of deanonymizing tech-
niguesin practice. To overcomethese obstaclesto practi-
cal identification of web pages, we apply machinelearn-
ing techniques to accommodate variations in web page
download behavior!. Furthermore, our techniques can
parse and identify web pages even within multiple inter-
leaved flows, such as those created by tabbed browsing,
with no additional information. The crux of our identifi-



cation method lies in modeling the web servers which
participate in the download of a web page, and using
those models to find the corresponding servers within
anonymized NetFlow data. Since the behavior of each
server, in terms of the flows they serve, is so dynamic,
we apply kernel density estimation techniques to build
models that allow for appropriate variations in behavior.

Simply finding web serversis not enoughto accurately
identify web pages, however. Information such asthe or-
der in which the servers are contacted, and which servers
are present can have significant impact on the identifi-
cation of web pages. In fact, the ordering and presence
of these servers may change based on various download
scenarios, such as changesin browser cache or dynamic
web page content. To capture these behaviors, we for-
malize the game of “20 Questions” asabinary Bayes be-
lief network, wherein questions are asked to narrow the
possible download scenarios that could explain the pres-
ence of aweb page within the anonymized data. Assuch,
our approach to web page identification beginswith iden-
tifying likely servers and then employs the binary Bayes
belief network to determineif those serversappropriately
explain the presence of the targeted web page within the
data.

Lastly, the evaluation of our techniques attempts to
juxtapose the assumptions of closed world scenarios
used in previous work to the realities of identifying web
pages in live network data. The closed world evalua-
tion of datacollected through automated browsing scripts
within a controlled environment was found to perform
well — detecting approximately 50% of the targeted web
pages with less than 0.2% false detections. In more re-
alistic scenarios, however, true detection and false de-
tection rates varied substantially based upon the type of
web page being identified. Our evaluation of data taken
through controlled experiments and live network cap-
tures shows that certain types of web pages are easily
identifiable in real network data, while others maintain
anonymity due to false detections or poor true detec-
tion rates. Additionally, we show the effects of locality
(i.e., different networks for collecting training and test-
ing data) on the detection of web pages by examining
three distinct datasets taken from disparate network en-
vironments. In general, our results show that information
leakage from anonymized flow logs poses athreat to web
browsing privacy insofar as an attacker is able to approx-
imate the basic browser settings and network conditions
under which the pages were originally downloaded.

2 Background and Related Work

Network trace anonymization is an active area of re-
search in the security community, as evidenced by
the ongoing development of anonymization methods

(e.0., [9, 23, 30]) and releases of network data that they
enable (e.g., [26, 7]). Recently, several attacks have been
developed that illustrate weaknesses in the privacy af-
forded by these anonymization techniques. In particu-
lar, both passive [6] and active attacks [2, 3] have shown
that deanonymization of public servers and recovery of
network topology information is possible in some cases.
Until now, however, an in-depth examination of the ex-
tent to which the privacy of web browsing activities may
also be at risk has been absent.

It would appear that existing approaches for infer-
ring web browsing activities within encrypted tunnels
[19, 32, 11, 1, 18, 8]) would be directly applicableto the
case of anonymized network data—in both cases, pay-
load and identifying information (e.g., |P addresses) for
web sites are obfuscated or otherwise removed. These
prior works, however, assume some method for unam-
biguously identifying the connections that constitute a
web page retrieval. Unfortunately, as we show later, this
assumption substantially underestimates the difficulty of
the problem as it is often nontrivial to unambiguously
delineate the flows that constitute a single page retrieval.
The use of NetFlow data exacerbates this problem. Fur-
thermore, as we show later, there are several challenges
associated with the modern web environment that exac-
erbates the problem of web page identification under re-
alistic scenarios.

To our knowledge, Koukis et al. [14] present the
only study of web browsing behavior inference within
anonymized packet traces, which anticipates some of
the challenges outlined herein. In their work, however,
the authors address the challenges of parsing web page
downloads from packet traces by using packet inter-
arrival times to delineate complete sessions. Though this
delineation can be successful in certain instances, there
are severa cases where time-based delineation al one will
not work (e.g, for interleaved browsing). In this paper,
we address severa challenges beyond those considered
by Koukis et a. and provide a more in-depth evalua-
tion that goes further than their exploratory work. More-
over, our work differsfromall prior work onthisproblem
(of which we are aware) in that it applies to flow traces,
which offer far coarser information than packet traces.

3 ldentifying Web Pages in Anonymized
NetFlow L ogs

The anonymized NetFlow data we consider consists of
a time-ordered sequence of records, where each record
summarizes the packets sent from the server to the
client within a TCP connection. These unidirectional
flow records contain the source (server) and destination
(client) IP addresses, the source and destination port



numbers, timestamps that describe the start and end of
each TCP connection, and the total size of the traffic
sent from the source to the destination in the flow (in
bytes). The NetFlow format also contains a number of
other fieldsthat are not utilized in thiswork. For our pur-
poses, we assume that the anonymization of the NetFlow
log creates consistent pseudonyms, such as those created
by prefix-preserving anonymization schemes [9, 23], for
both the source and destination |P addresses in these
records. Furthermore, we assume that the NetFlow data
faithfully records TCP traffic in its entirety.

The use of consistent pseudonym addresses allows us
to separate the connectionsinitiated from different hosts,
thereby facilitating per host examination. Additionaly,
we assume that port numbers and sizing information are
not obfuscated or otherwise altered to take on inconsis-
tent values since such information is of substantial value
for networking research (e.g., [10, 29, 12]). The unal-
tered port numbers within the flows allow us to filter the
flow records such that only those flows originating from
port 80 are examined?.

Initially, we also assume that web browsing sessions
(i.e., al flows that make up the complete download of a
web page) can be adequately parsed from the NetFlow
log. A similar assumption is made by Sun et al. [32]
and Liberatore et al. [18]. Though previous work has
assumed that web browsing session parsing algorithms
are available, accurate web session parsing is, in fact,
difficult even with packet traces and access to payload
information [31, 15]. In §6, we return to the difficulty
of parsing these sessions from real anonymized network
data. By adopting the assumption (for now) that accurate
web browsing session parsing can be done, it becomes
possible to parse the complete NetFlow data into non-
overlapping subsequences of flow records, where each
subsequence represents a single, complete web brows-
ing session for a client. Given the subsequent client web
browsing sessions, our goa is to extract features that
uniquely identify the presence of target web pageswithin
the anonymized NetFlow data, and model their behavior
in amanner that captures realistic browsing constraints.

3.1 Feature Selection

The most intuitive feature for discovering web pagesin
the anonymized NetFlow data is the sequence of flow
sizes observed during a complete web browsing session.
Each flow in the web browsing session is represented by
an index number indicating its ordering in the session,
and an associated flow size indicating the amount of data
transferred during the flow. Naively, one would expect
that the use of flow size, index pairs would suffice as a
good distinguisher for web pageidentification. However,
as Figure 1(a) shows, this is not the case. For instance,

notice that the front page of msn.com s fairly inconsis-
tent in the number and size of flows, and thereisasig-
nificant amount of overlap even among only these three
examples. Since we are examining flows, the number
of flows and their associated sizes are dependent on the
manner in which the client requests objects, such as pic-
tures or text. In many cases, the sequence in which the
objects are downloaded may change due to dynamic web
content, or the state of the client’s browser cache may
cause certain objects to be excluded. These changes to
the client’s download behavior cause object drift within
the flows, where web page objects are downloaded in
different flows or not downloaded at al. As a result,
the number of flows and their respective sizes can vary
widely, and are therefore a poor indicator of the identity
of the web page in question.

An important observation regarding thisinconsistency
is that the size of any flow is regulated by the cumula-
tive size of al the objects downloaded for the web page,
less the size of al objects downloaded in prior flows.
If alarge flow early in the browsing session retrieves a
significant number of objects, then the subsequent flows
must necessarily become smaller, or there must be fewer
flows overall. Conversely, asession of many small flows
must necessarily require more flows overall. In fact,
if we examine the cumulative perspective of web page
downloadsin Figure 1(b), we find that not only are these
sites distinguishable, but that they take consistent paths
toward their target cumulative size.

The existence of such paths and the inherent connec-
tion between flow size, index number, and cumulative
size motivates the use of al three features in identify-
ing web pages. These three features can be plotted in 3-
dimensional space, as shown in Figure 2(a), and the path
taken in this 3-dimensional space indicates the behavior
exhibited by the download of objectsfor a complete web
browsing session. Figure 2(b) shows an example of web
browsing session paths for the front pages of both ya-
hoo.com and msn.com overlaid on the set of points taken
over many web browsing sessions of msn.com's front
page. Clearly, the path taken by yahoo.comis distinct
from the set of points generated from web browsing ses-
sions of msn.com, while the msn.com path remains simi-
lar to past web browsing sessions.

Server sessions The use of flow size, index number,
and cumulative size information can be further refined
by considering the sequence of flows created from each
web server in the web browsing session, which we de-
note as a server session. Notice that when we sepa-
rate the flows for msn.com by the server that produced
them, each server occupies a very distinct area of the
3-dimensional space, as shown in Figure 3. This re-
finement offers two benefits in identifying web pages.



400

T
msn
cnn —+

n
350 ebay - 4
?

flow size (kilobytes)

0o 5 10 15 20 25 30 35

msn '
cnn -+
ebay -

m

Q

=

Qo

o

=

(o]

N

2]

[

2

s

= _

E —

3

o

30 35

index

Figure 1: (a) Sequentia and (b) cumulative views of page loads for msn.com, cnn.com, and ebay.com from a single
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Figure 2: (a) 3-D view of page loads for msn.com, cnn.com, and ebay.com from a single client; (b) Regions for
msn.com compared to sequences of yahoo.com and msn.com as downloaded by a single client

First, by abstracting the web browsing sessions to con-
sist of individual server sessions, we can use the pres-
ence or absence of servers and their relative ordering to
further differentiate web pages. The ordering of these
web servers provides useful information about the struc-
ture of the web page since there is often a dependency
between objects within the web page. For instance, the
HTML of a web page must be downloaded before any
other objects, and thus the first server contacted must be
the primary web server. Second, by refining our flow
information on a per server basis, we can create a fine
grained model of the behavior of the web browsing ses-
sion. If done correctly, the problem of identifying a web
page within anonymized NetFlow data can be reduced
to one of identifying the servers present within a given
web browsing session based on the path created by the
flows they serve, and the order in which the servers are
contacted.

Logical servers Intuitively, we could simply use the
flows served by each distinct web server IP address
(which we refer to as a physical server) to create the
3-dimensional space that describes the expected behav-
ior of that physical server in the web browsing session.
However, the widespread use of Content Delivery Net-
works (CDNs) means that there may be hundreds of dis-
tinct physical web servers that serve the same web ob-
jects and play interchangeable roles in the web brows-
ing session. These farms of physical servers can actually
be considered to be a single logical server in terms of
their behavior in the web browsing session. Therefore,
the 3-dimensional models we build are derived from the
samples observed from all physical serversin thelogical
server group.

Of course, the creation of robust models for the detec-
tion of web pages requiresthat the data used to create the
models reflect realistic behaviors of the logical servers
and the order in which they are contacted. There are a
number of considerations which may affect the ability
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of data to accurately predict the behavior of web page
downloads. These considerations are especially impor-
tant when an attacker is unable to gain access to the
same network where the data was collected, or when
that data is several months old. Liberatore et a. have
shown that the behavioral profiles of web pages, even
highly dynamic web pages, remain relatively consistent
even after several months[18], though the effects of web
browser caching behavior and the location where the net-
work data was captured have not yet been well under-
stood.

4 An Automated Classifier for Web Pages
in NetFlows

In this section, we address the problem of building auto-
mated classifiers for detecting the presence of target web
pages within anonymized NetFlow data. Throughthe use
of featuresdiscussed in §3, we create a classifier for each
web page we wish to identify. The classifier for a tar-
get web page consists of the 3-dimensional spaces for
each of itslogical servers, which we formalize by using
(i) kernel density estimates [28], and (ii) a series of con-
straints for those logical servers, formalized by a binary
Bayes belief network [20]. The goa of the classifier isto
attempt to create a mapping between the physical servers
found in the anonymized web browsing session and the
logical servers for the target web page, and then to use
the mapping to evaluate constraints on logical serversfor
the web page in question. These constraints can include
guestions about the existence of logical servers within
the web browsing session, and the order in which they
are contacted by the client. If the mapping meets the
congtraints for the given web page, then we assume that
the web pageis present within the web browsing session;
otherwise, we concludeit is not.

There are several steps, illustrated in Figure 4, that
must be performed on the anonymized NetFlow logsin
order to accurately identify web pages within them. Our
first step is to take the origina NetFlow log and parse

the flow records it contains into a set of web browsing
sessions for each client in the log. Recall that our initial
discussion assumes the existence of an efficient and ac-
curate algorithm for parsing these web browsing sessions
from anonymized NetFlow logs. These web browsing
sessions, by definition, consist of one or more physical
server sessions, which aretrivially parsed by partitioning
the flow records for each client, server pair into separate
physical server sessions. The physical server sessions
represent the path taken within the 3-dimensiona space
(i.e., flow size, cumulative size, and index triples) when
downloading objects from the given physical server. At
this point, we take the paths defined by each of the phys-
ical serversin our web browsing session, and see which
of the logical serversin our classifier it is most similar
to by using kernel density estimates [28]. Therefore, a
given physical server is mapped to one or more logical
servers based on its observed behavior. Thismappingin-
dicates which logical servers may be present within our
web browsing session, and we can characterize the iden-
tity of a web page by examining the order in which the
logical servers were contacted using a binary belief net-
work. If we can satisfy the constraints for our classifier
based upon the logical servers present within the web
browsing session, then we hypothesize that an instance
of the web page has been found. In §4.1 and §4.2, we
discuss how the kernel density estimates and binary be-
lief networks are created, respectively.

4.1 Kernel Density Estimation

In general, the kernel density estimate (KDE) [28] usesa
vector of samples, S =< s, s9, ..., s, > toderivean es-
timate for a density function describing the placement of
pointsin some d-dimensional space. To construct aK DE
for a set of samples, we place individual probability dis-
tributions, or kernels, centered at each sample point s;.
In the case of Gaussian kernels, for instance, there would
be n Gaussian distributions with means of s, ss, ..
respectively. To control the area covered by each distri-
bution, we can vary the so-called bandwidth of the ker-
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Figure 4. General overview of our identification process

nel. For a Gaussian kernel, its bandwidth is given by the
variance (or covariance matrix) of the distribution. Intu-
itively, a higher bandwidth spreads the probability mass
out more evenly over alarger space.

Unfortunately, determining the appropriate bandwidth
for agiven set of datapointsisan open problem. One ap-
proach that we have found to produce acceptable results
isto use a“rule of thumb” developed by Silverman [28]
and refined by Scott [27]. The bandwidth is calculated
as Hy = N~1/(d+4)4, for each dimension A = 1...d,
where N isthe number of kernels, d isthe number of di-
mensions for each point, and o A is the sample standard
deviation of the A dimension from the sample pointsin
S. The primary failing of this heuristic is its inability to
provide flexibility for multi-modal or irregular distribu-
tions. However, since this heuristic method provides ad-
equate results for the problem at hand, we forego more
complex solutions at thistime.

Oncethe distributions and their associated bandwidths
have been placed in the 3-dimensional space, we can cal-
culate the probability of agiven point, ¢ ;, under the KDE
model as:

n—1
Plt) = = 3 Pu(t) @
=0

where P, (t,) isthe probability of point ¢ ; under the ker-
nel created from sample point s;.

4.1.1 Application to Web Page | dentification

To apply our anonymized NetFlow datato a KDE model,
wetake the set of paths defined by the triples of flow size,
cumulative size, and index in each of the physical server
sessions of our training data and use them as the sample
points for our kernels. We choose the Gaussian distribu-
tion for our kernels because it allows us to easily eval-
uate probabilities over multiple dimensions. The band-
width of these distributions is calculated as described
previoudly, except that for the flow size and cumulative
size dimensions, we take the average standard deviation
across all index values as the bandwidth. Furthermore,
we bound the bandwidth in each dimension such that it

is dways > 1 to adlow for some minimum amount of
variability.

To evaluate an anonymized physical server session on
a particular KDE model, we simply evaluate each point
in the path for that physical server session using Egn. 1,
and calculate the total probability of the given physical
Server session, ¢, as:

() = ] P(t) @
=0

where ¢; is the 5" point in the physical server session
t, and m is the number of flows in ¢. For classifica-
tion, we consider any physical server session whose path
has a non-zero probability (from Egn. 2) under the given
model to be a mapping between the logical server repre-
sented by the model and the physical server session be-
ing evaluated. Of course, it may be possible for physical
server session ¢ to follow a path that matches portions
of several digoint paths in the KDE model without ex-
actly matching any pathsin their entirety. Consequently,
the path would achieve anon-zero probability despite the
fact that it is not similar to any of the pathsin the model.
To prevent such situations from occurring, we apply lin-
ear interpolation to each pair of points representing con-
secutive flow indices on a path to create sample points at
half index intervals.

The use of path probabilities alone, however, is insuf-
ficient in uniquely describing the behavior of the logical
server. To see why, consider the case where we have
a model for a logical server which typicaly contains
ten or more total flows. It may be possible for a much
smaller physical server session with one or two flows to
achieve a non-zero probability despite the fact that there
clearly was not an adequate amount of data transferred.
To address this, we also create a KDE model for the fi-
nal points in each sample path during training, denoted
as end points. These end pointsindicate the requisite cu-
mulative size and number of flowsfor a compl ete session
with the given logical server. Asbefore, we create distri-
butions around each sample end point, and calculate the



probability of the physical server session’s end point by
applying Egn. 1. Any anonymized physical server ses-
sion which has a non-zero probability on both their path
and their end points for a given logical server moddl is
mapped to that logical server.

Automatically Building Logical Server KDE Models
To create our logical server models, we use two heuris-
tics to group physical serversinto logical server groups.
First, if two physical serversin our training data use the
same hostname and serve the exact same HTTP URL,
we can assume they are the same logical server and their
sample points can be merged into a single KDE model.
Since we are in control of our training data, we can col-
lect packet traces to find URL and hostname information
before converting the data to NetFlow format to create
the paths that will make up our KDE models. It is of-
ten the case, however, that different hostnames are used
among physical serversin the same logical server group,
and this may prevent some of the physical serversin our
training data from being placed into the correct logical
Server groups.

To address this, we apply a second heuristic that
merges these remaining physical servers by examining
the behavior exhibited by their KDE models. If aran-
domly selected path and its end point from a given phys-
ical server's training data achieves non-zero probability
on the KDE model of another physical server, then those
two physical servers can be merged into a single logical
server. The combination of these two heuristics allow us
to reliably create KDE models that represent the logical
servers found in the web browsing session. By applying
the points found in an anonymized physical server ses-
sion to each of the KDE models for a given web page,
we can create candidate mappings from the anonymized
physical server to the logical servers for the target web

page.

4.2 Binary BayesBelief Networks

As discussed earlier, we formalize the constraints on
the logical servers using a binary Bayes belief network
(BBN). In a typical Bayes network, nodes represent
events and are inter-connected by directed edges which
depict causal relations. Thelikelihood that a given event
occursis given by the node’s probability, and is based on
the conditional probability of its ancestors. In the binary
Bayes belief network variant we apply here, we simply
use a binary belief network where events have boolean
values and the causal edges are derived from these val-
ues[20].

An example of abinary belief network isgivenin Fig-
ure 5, where the probability of event y is conditioned
upon event —z. One way of thinking of this network is

@ is-present?
/ N\

false true
/\
false true

v oy
@ e Q © I relative sizes

Figure 5: Example BBN
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as a strategy for the game of “20 Questions’ where the
player attempts to identify an object or person by asking
questions that can only be answered with ‘Yes’ or ‘No’
responses. Our binary belief network is ssimply aformal-
ization of this concept (though we are not limited to ask
20 questions), where the answer to any question dictates
the best strategy for asking future questions.

To create the belief network, we first decide upon a
set of questions (or events) that we would like to evalu-
ate within the data. In the context of web privacy, these
events relate to the existence of logical servers, their
causal relationships, and cumulative size. The belief net-
work can be created automatically by first examining all
possible existence and ordering events that occur within
the training data. Next, from this set of events, we can
simply select the event whose probability of being True
in the training data is highest among all events. Having
done so, the training data can then be partitioned into two
groups: onegroup whose datahasthe value True for the
selected event, and another whose value is False for
that event. The selected event is then removed from the
set of possible events and each partition of training data
now selects another event from the remaining set whose
probability on their respective datais highest.

This partitioning process is repeated recursively, a-
lowing each branch to grow independently. A given
branch halts its recursion when its conditional proba-
bility for an event is < e. The conditiona probability
threshold, ¢, indicates the percentage of the training data
that remains at a given leaf node, and therefore we stop
our recursion before the tree becomes overfitted to our
training data. Any leaf node that halts recursion with
some amount of training data remaining is considered as
an accepting node, and all other leaf nodes are labeled
as rejecting nodes. Accepting nodes implement one ad-
ditional check to ensure that the total size of all flows
in the web browsing session iswithin +10% of the total
sizes observed during training.



5 A Closed-world Evaluation

To gaugethethreat posed by the our web pageidentifica-
tion techniques—and to place our results in context with
prior work—wefirst provide an eval uation under aclean,
closed world testing model. Prior work on this topic also
focuses on the evaluation of identification techniques
based on a controlled network environment, browsing
a set of target web pages across an encrypted tunnel
[32], through a proxy server [18], or within anonymized
packet traces [14]. Each of these works, with the excep-
tion of [14], also assume that the web browsing session
can be easily parsed from the stream of packets crossing
the encrypted tunnel or proxy server. Inwhat follows, we
also adopt this assumption for this particular evaluation,
though we will re-visit the inherent challenges with web
browsing delineation in §6.

In short, our initial evaluation is considered under con-
trolled environments similar to past work, but with two
notable differences. First, in the scenarios we exam-
ine, there is substantially less data available to us than
a the packet trace level; recall that NetFlows aggre-
gate al packets in a flow into a single record. Second,
rather than assuming that the client’s browser cache is
turned off, we attempt to simulate the use of caching in
browsers in our training and testing data. The simula-
tion of browser caching behavior was implemented by
enabling the default caching and cookie policies within
MorzillaFirefox™, and browsing to the sitesin our target
set at random. Of course, this method of cache simula-
tionis not entirely realistic, as the probability of a cache
hit is directly proportional to the frequency with which
the user browses that web site. However, in lieu of mak-
ing any assumptions on the distribution of web brows-
ing for a given user, we argue that for the comparison at
hand, the uniform random web browsing behavior pro-
vides an adequate approximation.

Data Callection The data for our closed world eval-
uation was collected with the use of an automated
script that used Firefox to randomly visit selected web
pages from a set of target pages (with Adobe Flash and
Javascript enabled). The web browser was set to the de-
fault caching and cookie policies to ensure the most re-
alistic behavior possible in such a closed world environ-
ment. Specifically, the script first initiated a new Fire-
fox instance, and opened new tabs within the single Fire-
fox instance for each new web page visited. While these
web pages were not loaded in parallel, several web sites
automatically refresh themselves at given intervals, thus
adding noise to our data whenever they appeared among
one of the tabs of the active Firefox instance. Once four
web pages were opened in the current Firefox instance,
the browser was closed gracefully to alow the cache to

flush to disk, and a new Firefox instance was loaded to
continue the random browsing. For each visit to a web
page, we captured the packets for that web browsing ses-
sion and recorded it to a separate trace. The packet cap-
tures were then converted into NetFlow logs by creat-
ing single flow records for each TCP connection in the
session. Notice that the use of an automated browsing
script alowed us to cleanly delineate between browsing
sessions, as well as to simulate cache behavior through
random browsing.

Our target pages were the front pages of the top 50
most popular sites as ranked by alexa.com. Addition-
aly, we also collected information about the front pages
of sites ranked 51-100 on the alexa.com list for use in
providing robust evaluation of the fal se detection rates of
our technique. Though we have chosen to evaluate our
techniques on the top 100 sites, there is nothing inherent
in their structure that differentiates them from other web
pages. In fact, the same techniques are equally applica-
blein targeting any web page of the attacker’s choosing.

The web pages were retrieved by running the auto-
mated browsing script on a host within the Johns Hop-
kins University network for a total of four weeks, cre-
ating a total of 18,525 web browsing sessions across all
100 web pagesin our list of web pages. From this data,
we select thefirst 90 web browsing sessions of our target
web pages (i.e., those within the top 50 of the alexa.com
ranking) as the training data for the creation of the ker-
nel density estimate (see §4.1) and binary Bayes belief
network models (see §4.2) that make up the profiles for
each target web page. The remaining sessions are used
as test data and are anonymized by replacing IP ad-
dresses within the NetFlow data with prefix-preserving
pseudonyms according to the techniques described by
[23]. Notice that since we assume that the web browsing
sessions are easily parsed, we can simply use each web
browsing session in our test data directly to determine
if that web browsing session can be identified as any of
the 50 web pages in our target set using the techniques
described in §3.

Results Theresults for this evaluation are given in Ta-
ble 1. The analysis shows that our web page identifi-
cation method performs reasonably well in the closed
world environment. Though the overall true detection
rate is only 48%, its associated false detection rate is
exceptionally low at only 0.18% across al web pages.
For comparison, using random guessing to identify web
pages would yield an overall true detection rate of only
2%. Moreover, keep in mind that under the goals of net-
work data anonymization, no inference of browsing be-
havior should be possible.

For ease of exposition, we aso partition the 50 target
web pagesinto canonical categoriesbased on the primary



| Category

Examples

[TD (%) | FD (%) |

Other passport.net, statcounter.com 95.33 0.16
Social Networking and Dating | match.com, myspace.com 64.59 0.11
Search Engines and Web Portals | msn.com, google.com 60.42 0.16
Reference imdb.com, wikipedia.org 54.17 0.02
Media flickr.com, youtube.com 52.82 0.42
Corporate microsoft.com, apple.com 48.95 0.15
Shopping amazon.com, ebay.com 39.22 0.00
News cnn.com, nytimes.com 28.74 0.06
Job Search monster.com, careerbuilder.com | 26.73 0.00
Sports foxsports.net, mib.com 20.74 0.00
| Overall | | 4889 | 018 |

Table 1: True and false detection rates for canonical categoriesin closed world test

function of the web site. Notice that the performance of
the canonical classes varies based on the dynamism of
the contents in the web page. For instance, some of the
more difficult categories in terms of true detection are
those whose front page content changes frequently, e.g,
cnn.com. Conversely, pages with simple, static content,
like passport.net or google.com, can beidentified reason-
ably well. Moreover, those web sites with simple lay-
outs and little supporting infrastructure also tend to fare
worst with respect to false detections, while complex,
dynamic sites have few, if any, false detections. These
initial results hint at the fact that the ability to reliably
identify web pagesis connected with the complexity and
dynamism of theweb page. In what follows, we examine
whether these results hold under a more realistic exami-
nation based on real world browsing.

6 Considerationsfor the Real World

The closed world evaluation in the previous section made
severa assumptions about the attacker’s ability to parse
web sessions and simulate caching behavior. Moreover,
since both the training and testing data were collected at
the same | ocation, the effects of locality on the effective-
ness of the identification techniques were not accounted
for. These assumptions lead to a disconnect between the
results of our closed world testing and those that can be
expected in realistic attacks on anonymized data. In or-
der to perform a rigorous evaluation of the real threats
posed by such identification techniques, we must address
several issues, including web browsing session parsing
and caching behavior.

Web Browsing Session Parsing One of the biggest
concerns with the closed world evaluation in §5 is that
thereis an implicit assumption that parsing web sessions
from live network data is a simple and accurate task.
There has been extensive work in attempting to parse

packet traces into web browsing sessions, yet much of
this work requires access to plaintext payloads, and re-
sults show that this parsing is not completely accurate
[16, 31, 15]. To our knowledge, there is no prior art
on performing similar parsing on NetFlow data. Koukis
et al. attempted to use a heuristic of packet inter-arrival
times to delineate sessions in packet traces, but their
techniques were only able to correctly identify 8% of
the web browsing sessions—underscoring the difficulty
of the problem [14].

Fortunately, our kernel density estimate (KDE) and bi-
nary Bayes belief network (BBN) models can be modi-
fied to overcome the challenges of web browsing ses-
sion parsing without significant changes to our identifi-
cation process. In our previous evaluation, we assumed
that the KDE and BBN model swere given asubsequence
of the original NetFlow log that corresponded to a com-
plete web browsing session for a single client. For our
real world evaluation, however, we remove this assump-
tion. Instead, to parse the NetFlow log, we assume that
all flows of a given web browsing session are clustered
in time, and partition the NetFlow log into subseguences
such that the inter-arrival times of the flows in the parti-
tionis < § = 10 seconds. This assumption is similar to
that of Koukis et a. [14] and provides a coarse approx-
imation to the web browsing sessions, but the resultant
partitions may contain multiple web browsing sessions,
or interleaved sessions.

Notice that we can simply use each of the physical
servers within these partitions as input to the KDE mod-
els for a target web page to determine which logical
servers may be present in the partition. Thus, we apply
the flows from every physical server in our partitioned
NetFlow data to the KDE models for our target page to
create the logical server mappings. If a physical server
in our partition does not map to alogical server, we ig-
nore that physical server’s flows and remove it from the
partition. Thus, by removing these unmapped physical



servers, we identify a candidate web browsing session
for our target site. Since the BBN operates directly on
the mappings created by the KDE models, we traverse
the BBN and determineif the web page is present based
on the physical serversthat were properly mapped. This
technique for finding web browsing sessions is particu-
larly robust sinceit can find multiple web pages within a
single partition, even if these web pages have been inter-
leaved by tabbed browsing.

Browser Cache Behavior  Another serious concernin
our closed world evaluation is the variability of web
browsing session behavior due to the client’s browser
cache. In our closed world evaluation, we created our
models from data collected by an automated script that
randomly browsed the front pages from among the top
100 sites according to alexa.com. The use of uniform
random browsing with the default cache policy, how-
ever, does not accurately reflect the objects that would
be cached by real clients. In redlity, the client’s browser
cache would tend to hold more objects from the most
frequently visited web pages, making the cache states
highly specific to the client. Clearly, using our simu-
lated caching data alone is not enough to create models
that are able to detect both frequently and infrequently
visited sites. To aleviate this shortcoming, we create a
second set of training data by setting the browser’s cache
limit to 1.5GB. With such alarge browser cache, objects
should not be evicted from the cache even when we per-
form our random browsing, thereby allowing us to gain
information about web browsing behaviors for our tar-
get sites when they are viewed frequently. The training
data that we use to create our models now consists of 90
web browsing sessions of simulated cache data, and 64
browsing sessions of unlimited cache data for each tar-
get site. The procedure for building our models remains
the same, except we now use the flow records from both
cache scenarios.

Results To provide a more readistic evaluation of the
threat our identification techniques pose to anonymized
NetFlow data, we re-examine its performance on three
distinct datasets. First, we use the testing data from our
closed world evaluation to measure the effect that the in-
troduction of unlimited cache data and web session pars-
ing have on the performance of our technique. Second,
we capture web browsing sessions from different net-
work providers in Maryland, and in Pennsylvania. By
comparing the performance of our technique on these
three datasets, we can glean insight into the effects of |o-
cality on the success of attacks on anonymized NetFlow
data.

The effects that the changes to our models have on
the performance of our technique are shown in Table

2. Clearly, the false detection rate increases substan-
tialy, but the true detection rate also increases. Asin
the closed world scenario, we find that the web pages
with constantly changing content are more difficult to
detect than static web pages, and that those sites with
complex structure (i.e., many logical servers, and many
flows) achieve a significantly lower false detection rate
than those sites with simple structure. The substantial
change in performance can be explained by the relax-
ation of the BBN constraints to allow for web browser
session parsing. This relaxation allows any web brows-
ing session where a subset of physical servers meets the
remaining constraints to be identified, thereby causing
the increase in both true detection and false detection
rate. A more detailed analysis of the implications of
these effectsis provided in §7.

It is often the case that published network datais taken
at locations where an attacker would not have access to
the network to collect training data for her models, and
so we investigate the effect that the change in locality
has on the performance of our technique. The results
in Table 2 show that there is, indeed, a drop in perfor-
mance due to changes in locality, though trends in true
detection and fal se detection rates still hold. In our eval-
uation, we noticed that the Johns Hopkins data used to
train our web page modelsincluded aweb caching server
that caused significant changesin the download behavior
of certain web pages. These changesin behavior in turn
explain the significant difference in performance among
data collected at different localities. It would appear that
these results are somewhat disconcerting for a would-be
attacker, since she would haveto generatetraining dataat
anetwork that was different from where the anonymized
datawas captured. However, she could make her training
more robust by generating data on anumber of networks,
perhaps utilizing infrastructure such as PlanetLab [25],
though the effects of doing so on the performance of the
technique are unknown. By including web page down-
load behavior from a number of networks, she can en-
sure that the KDE and BBN models for each target web
page are robust enough to handle a variety of network
infrastructures.

7 A Realistic Threat Assessment

Finally, we provide a threat assessment by applying our
technique to live data collected from a public wireless
network at Johns Hopkins University Security Institute
over the course of 7 days. From this data, we examine
the expected real world accuracy of our techniques and
discuss the features that make some web pages primetar-
gets for identification.



Maryland Pennsylvania

Category TD (%) | FD (%) | TD (4) | FD (A) | TD (A) | FD (4)
Other 100.00 | 10.71 -40.00 | +1.98 -6.25 | +10.74
Search/Web Portals 94.29 13.92 -36.47 | +3.92 | -26.60 -0.45
Social Network/Dating | 75.75 9.02 -15.75 | +4.93 | +13.61 | +9.95
Media 75.71 30.61 -3.71 +2.00 | -30.97 | +5.75
Corporate 75.00 1164 | -3750 | +255 | -43.09 | +3.06

Job Search 72.50 181 -4750 | +1.10 | -4491 | +7.94
Shopping 71.00 4.89 -17.67 | +355 | -40.05 | +1.37

News 70.71 2.50 -41.54 | +0.15 | -35.00 -0.14
Reference 67.00 1464 | -25.82 | +9.59 +1.52 | +19.13
Sports 66.67 26.57 -9.53 -6.23 +4.16 | -11.87

| Overal | 75.58 | 13.28 | -26.86 | +1.47 | -24.39 | +4.59 |

Table 2: True and false detection rates for canonical categoriesin JHU data, and comparison to remote datasets

| Category | Web Page | TD (%) | FD (%) |
Reference imdb.com 100.00 131
nytimes.com 0.00 0.06
digg.com 61.76 0.35
News washingtonpost.com | 9.09 0.01
cnn.com 44.00 8.30
weather.com 0.00 2.27
google.com 28.57 22.31
Search/Web Portals msn.com 0.00 6.18
yahoo.com 60.98 0.89
. . facebook.com 0.00 0.07
Social Network/Dating myspace.com 25.00 65.55
Shopping ebay.com 0.00 0.10
amazon.com 0.00 0.78
Corporate usps.com 0.00 4.66

| Overall | | 3365 | 9.09 |

Table 3: True and false detection rates for web pagesin live network data

Results The results of our experiment on live data,
shown in Table 3, provides some interesting insight
into the practicality of identifying web pages in rea
anonymized traffic. In our results from local testing data
collected via automated browsing, we observe that cer-
tain categories made up mostly of simple, static web
pages (e.g., search engines) provide excellent true detec-
tion rates, while web pages whose content changes often
(e.g., news web pages) perform significantly worse. Fur-
thermore, categories of sites with complex structure (i.e.,
many logical servers) generally have exceptionally low
false detection rates, while categories of ssimplesiteswith
fewer logical servers produce extremely high fal se detec-
tion rates. Upon closer examination, not all web pages
within a given category perform similarly despite hav-
ing similar content and function. For instance, cnn.com
and nytimes.com have wildly different performance in
our live network test despite the fact that both pages have

rapidly changing news content.

To better understand this difference in our classifier's
performance for different web pages, we examine three
features of the page loads in our automated browsing ses-
sions for each site: the number of flows per web brows-
ing session, number of physical servers per web brows-
ing session, and the number of bytes per flow. Our goals
lie in understanding (i) why two sites within the same
category have wildly different performance, and (ii) why
simple web pages introduce so many more false detec-
tions over more complex web pages. To quantify the
complexity of the web page and the amount of varia-
tion exhibited in these features, we compute the mean
and standard deviation for each feature across all obser-
vations of the web page in our training data, including
both simulated cache and unlimited cache scenarios. The
mean val ues for each feature provide an idea of the com-
plexity of the web page. For instance, a small average



number of physical servers would indicate that the web
page does not make extensive use of content delivery net-
works. The standard deviationstell us how consistent the
structure of the page is. These statistics offer a concise
measure of the complexity of each web page, enabling
usto objectively compare sitesin order to determinewhy
some are more identifiable than others.

Returning to the difference in true detection rates for
cnn.com and nytimes.com, the front pages of both sites
have constantly changing news items, a significant num-
ber of advertisements, and extensive content delivery
networks. One would expect that since the web pages
change so rapidly, that our accuracy in classifying them
would be comparable. Instead, we find that we can de-
tect nearly half of the occurrences of cnn.com in live
network data, while we never successfully detect ny-
times.com. In Table 4, we see that both web pages have
similar means and standard deviations for both flow size
and number of physical servers. This similarity is likely
due to the nature of the content these two sites provide.
However, the number of flows per web browsing ses-
sion for nytimes.com is nearly double that of cnn.com.
Moreover, nytimes.com exhibits high variability in the
number of flows it generates, while cnn.com seems to
use a fairly stable number of flows in al web brows-
ing sessions. This variability makes it difficult to con-
struct high-quality kernel density estimates for the logi-
cal serversthat support nytimes.com, so our detector nec-
essarily performs poorly onit.

Another interesting result from our live network eval-
uation is that some web page models appear to match
well with almost all other pages, and therefore cause an
excessive amount of false detections. For instance, Table
3 shows that yahoo.com has an exceptionally low false
detection rate among all web pages in our live traffic,
while google.com has one of the highest false detection
rates. Both web pages, however, provide adeguate true
detection rates. In Table 5, we see that google.com and
yahoo.com have very distinct behaviors for each of the
features.

The metrics for our three features show that
google.com transfers very little data, that there is almost
alwaysonly one physical server in the web browsing ses-
sion, and that there are normally only one or two flows.
On the other hand, yahoo.com serves significantly more
data, has a substantial number of physical servers, and
causes the browser to open several flows per web brows-
ing session. The web browsing sessions for google.com
and yahoo.com both exhibit very little variability, though
yahoo.com has more variahility in its flow sizes due to
its dynamic nature. Since both web pages have relatively
low variability for al three features, they are both fairly
easy for our techniques to detect, which corroborates
our earlier claim that cnn.comis easy to detect because

of the relative stability of its features. However, since
google.comis so simplistic, with only a single physical
server and very few flows on average, its BBN and KDE
models have very few constraintsthat must be met before
the detector flags amatch. Hence, many physical servers
in agiven NetFlow log could easily satisfy these require-
ments, and this causes the detector to produce an exces-
sive number of false detection. By contrast, the models
for yahoo.com have enough different logical serversand
enough flows per session that it is difficult for any other
site to fit the full description that is captured in the BBN
and KDE models.

Discussion With regard to redistic threats to
anonymized network data, these results show that
there are certain web pages whose behavior is so
unpredictable that they may be very difficult to detect in
practice. Also, an attacker has little chance of accurately
identifying small, simple web pageswith our techniques.
Complex web pages containing large content delivery
networks, on the other hand, may alow an attacker
to identify these pages within anonymized flow traces
with low false detection rates. Finally, we have found
that an attacker must consider the effects of locality
on the training data used to create the target web page
models, such as the presence of private caching servers
or proxies. These locality effects adversely influence the
true detection rates, but they might be overcome through
diversification of the training data from severa distinct
locations. It is unclear how this diversification would
affect the performance of our techniques.

When evaluating the threat that our web page identifi-
cation attack posesto privacy, it is prudent to consider the
information an attacker can reliably gain, possible practi-
cal countermeasuresthat might hamper such attacks, and
the overarching goals of network data anonymization.
With the techniques presented in this paper, an attacker
would be ableto create profiles for specific web pages of
interest, and determine whether or not at least one user
has visited that page, as long as those target web pages
were of sufficient complexity. While the attacker will
not be able to pinpoint which specific user browsed to
the page in question with the technique presented in this
paper, such information leakage may still be worrisome
to some data publishers (e.g., web browsing to several
risqué web pages).

There are, however, practical concerns that may af-
fect the attacker’s success aside from those described in
this paper, such as the use of ad blocking software and
web accelerators that dramatically alter the profiles of
web pages. These web browsing tools could be used to
make the attacker’s job of building robust profiles more
difficult, as the attacker would not only have to adjust
for locality effects, but also for the effects of the particu-



Feature cnn.com nytimes.com
Mean Std. Dev. | Mean  Std. Dev.
Number of Flows 18.44 421 30.69 10.62
Number of Physical Servers | 12.79 2.27 15.32 4,14
Flow Size (KB) 568.20 286.95 | 69287 298.73

Table 4: Comparison of mean and std. deviation for features of cnn.com and nytimes.com

Feature google.com yahoo.com
Mean Std. Dev. | Mean  Std. Dev.
Number of Flows 173 0.56 9.02 3.02
Number of Physical Servers | 1.03 0.17 5.25 1.79
Flow Size (KB) 13.64 1037 | 21951 187.26

Table 5: Comparison of mean and std. deviation for features of google.comand yahoo.com

lar ad blocking software or web accelerators. Moreover,
while our evaluation has provided evidence that certain
classes of web pages are identifiable despite the use of
anonymization techniques, it is unclear how well thetrue
detection and fal se detection rates scale with alarger tar-
get web page set. Therefore, our techniques appear to be
of practical concern insofar as the attacker can approxi-
mate the behavior of the browsers and network environ-
ment used to download the web page.

8 Conclusion

In this paper, we perform an in-depth analysis of the
threatsthat publishing anonymized NetFlow traces poses
to the privacy of web browsing behaviors. Moreover, we
believe our analysis is the first that addresses a number
of challenges to uncovering browsing behavior present
in real network traffic. These challenges include the ef-
fects of network locality on the adversary’s ability to
build profiles of client browsing behavior; difficulties
in unambiguously parsing traffic to identify the flows
that congtitute a web page retrieval; and the effects of
browser caching, content distribution networks, dynamic
web pages, and HTTP pipelining. In order to accommo-
date for these issues, we adapt machine learning tech-
niques to our problem in novel ways.

With regardto realistic threatsto anonymized NetFlow
data, our results show that there are certain web pages
whose behavior is so variable that they may be very dif-
ficult to detect in practice. Also, our techniques offer an
attacker little hope of accurately identifying small, sim-
ple web pages with a low false detection rate. However,
complex web pages appear to pose a threat to privacy.
Finaly, our results show that an attacker must consider
the effects of locality on the training data used to create
the target web page models.

Our results and analysis seem to contradict the widely

held belief that small, static web pages are the easiest
target for identification. This contradiction can be ex-
plained by the distinct differences between closed world
testing and the realities of identifying web pages in the
wild, such as browser caching behavior and web brows-
ing session parsing. On the whole, we believe our study
shows that a non-trivial amount of information about
web browsing behaviors is leaked in anonymized net-
work data. Indeed, our analysis has demonstrated that
anonymization offers less privacy to web browsing traf-
fic than once thought, and suggests that a class of web
pages can be detected in a flow trace by a determined
attacker.
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Notes

1Though machine learning techniques are certainly not the only
method for handling variability in web pages, their application in this
context seems to be intuitive.

2Note that even if this assumption did not hold there are still tech-
niques that can be used to infer the presence of HTTP traffic (e.g, based
on traffic-mix characteristics).
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