
Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Ray CastingRay CastingRay Casting

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Ray Casting AlgorithmRay Casting Algorithm

For each pixelFor each pixel

1. Compute ray from eye through pixel1. Compute ray from eye through pixel

2. For each primitive2. For each primitive

——Test for ray-object intersectionTest for ray-object intersection

3. Shade pixel using nearest primitive (or set to3. Shade pixel using nearest primitive (or set to
background color)background color)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Computing the RaysComputing the Rays

Choose eye point, view direction, upChoose eye point, view direction, up
direction, fields of view (x and y)direction, fields of view (x and y)

pptt = = eyeeye + t* + t*v v ((vv typically normalized) typically normalized)

Compute rays to two opposite cornersCompute rays to two opposite corners

Compute step sizes,Compute step sizes, ∆∆∆∆xx and and ∆∆∆∆yy to go from to go from
pixel to pixelpixel to pixel

To compute new ray: take step, thenTo compute new ray: take step, then
normalizenormalize

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

2D ray calculation2D ray calculation

view
direction

eye

θ θ

pixels on view plane

va vb

viewview is normalized
 view direction

rightright = (viewviewy, -viewviewx)
vvaa = viewview - tanθ ∗ rightright
vvbb = viewview + tanθ * rightright
stepstep = (vvbb - vvaa) / num_pixels
vv00 = vvaa + step step / 2
vvii = vvi-1i-1 + stepstep

In 3D, we have an additionalIn 3D, we have an additional
step size and field-of-viewstep size and field-of-view
angle as well as an up vector.angle as well as an up vector.

Note: take equal-sized steps inNote: take equal-sized steps in
viewing plane, not equal angles!viewing plane, not equal angles!

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Computing IntersectionsComputing Intersections

Ray is in Ray is in parametricparametric form (t is parameter) form (t is parameter)

Represent primitive in Represent primitive in implicitimplicit form: form:
f(x,y,z) = 0f(x,y,z) = 0

(any (x,y,z) on surface evaluates to zero)(any (x,y,z) on surface evaluates to zero)

Substitute (x,y,z) of ray into f(x,y,z) andSubstitute (x,y,z) of ray into f(x,y,z) and
solve for tsolve for t
•• degree n implicit function will be degree n in tdegree n implicit function will be degree n in t

•• quadric surfaces may be solved with quadraticquadric surfaces may be solved with quadratic
equation -- pick real solution closest to eyeequation -- pick real solution closest to eye

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example Quadric FunctionsExample Quadric Functions

Sphere: (x-a)Sphere: (x-a)22 + (y-b) + (y-b)22 + (z-c) + (z-c)22 - r - r22 = 0 = 0

Circular cylinder (parallel to z-axis):Circular cylinder (parallel to z-axis):

(x-a)(x-a)22 + (y-b) + (y-b)22 - r - r22 = 0 = 0

HyperbolicHyperbolic paraboloid paraboloid::

yy22/b/b22 - x - x22/a/a22 - z = 0 - z = 0

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

General QuadricsGeneral Quadrics

General quadric has form:General quadric has form:

AxAx22 + 2Bxy + 2Cxz + 2Dx + Ey + 2Bxy + 2Cxz + 2Dx + Ey22 + 2Fyz + + 2Fyz +
2Gy + Hz2Gy + Hz22 + 2Iz + J = 0 + 2Iz + J = 0
or...or...
xxttQQxx = 0, where = 0, where xxtt = [x y z 1] and = [x y z 1] and

 Q = A B C D Q = A B C D
 B E F G B E F G

 C F H I C F H I
 D G I J D G I J

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Quadric IntersectionsQuadric Intersections

Quadric:Quadric: xxttQxQx = 0 = 0

Ray:Ray: x x = = p p + + t tvv

Substituting ray forSubstituting ray for x x::

((pp + + t tvv))ttQQ((pp + + t tvv) = 0) = 0

ppttQpQp + + ppttQQttvv + + t tvvttQpQp + + t tvvttQQttvv = 0 = 0

((vvttQvQv)t)t22 + (+ (ppttQvQv + + vvttQpQp)t +)t + ppttQpQp = 0 = 0

((vvttQvQv)t)t22 + (2 + (2vvttQpQp)t +)t + ppttQpQp = 0 = 0

(Q is symmetric)(Q is symmetric)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Common Ray-tracing PrimitivesCommon Ray-tracing PrimitivesCommon Ray-tracing Primitives

Sphere, ellipsoidSphere, ellipsoid

CylindersCylinders

Plane, trianglePlane, triangle

•• Ax + By + Ax + By + Cz Cz + D = 0+ D = 0

TorusTorus

BezierBezier//Nurbs Nurbs patchespatches

•• parametric, so use implicit form of rayparametric, so use implicit form of ray

——intersection of two planesintersection of two planes

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Local Illumination ShadingLocal Illumination Shading

Compute normal at closest intersectionCompute normal at closest intersection

•• ∇∇∇∇ff = (= (∂∂∂∂x, x, ∂∂∂∂y, y, ∂∂∂∂z) is normal vector field for z) is normal vector field for
implicit function, fimplicit function, f

For each lightFor each light

•• Use position and normal to compute lightUse position and normal to compute light
contributioncontribution

•• Accumulate light contributionsAccumulate light contributions

Color pixelColor pixel

•• Clamp to avoid overflowClamp to avoid overflow

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

ShadowsShadows

Only add contribution from a light if it isOnly add contribution from a light if it is
visiblevisible from the point (and vice versa) from the point (and vice versa)

•• test for intersections along ray in L directiontest for intersections along ray in L direction

•• accumulate contribution if no occlusionaccumulate contribution if no occlusion

(illumination is no longer totally local)(illumination is no longer totally local)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Truncating PrimitivesTruncating Primitives

Use another implicit functionUse another implicit function

•• Test which Test which sideside of the implicit function the of the implicit function the
intersection is onintersection is on

•• Keep intersection only if it is on the correctKeep intersection only if it is on the correct
sideside

For example, truncate a cylinder using twoFor example, truncate a cylinder using two
plane equations (or perhaps a sphere)plane equations (or perhaps a sphere)

•• then cap using the two planes truncated by thethen cap using the two planes truncated by the
cylindercylinder

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Constructive Solid GeometryConstructive Solid Geometry

Perform hierarchical set operations onPerform hierarchical set operations on
primitivesprimitives

Union: Union: ∪∪∪∪

Intersection: Intersection: ∩∩∩∩

Difference: Difference: 

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

CSG OperatorsCSG Operators

Square ∪ Circle =

Square ∩ Circle =

Square  Circle =

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

CSG HierarchyCSG Hierarchy

Circle Rectangle

Circle∩


=

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Ray Tracing CSGRay Tracing CSG

Each “object” may be a primitive or a CSGEach “object” may be a primitive or a CSG
hierarchyhierarchy

Find Find allall ray-primitive intersections for ray-primitive intersections for
hierarchyhierarchy

Use CSG operators to determine whichUse CSG operators to determine which
intervalsintervals are solid or vacant are solid or vacant

Use start of nearest solid interval as ray-Use start of nearest solid interval as ray-
object intersectionobject intersection

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

CSG Tracing AlgorithmCSG Tracing Algorithm

Start at root of CSG HierarchyStart at root of CSG Hierarchy

Trace ray through left child - result isTrace ray through left child - result is
ordered list of intersections, formingordered list of intersections, forming
solid and vacant intervalssolid and vacant intervals

Trace ray through right childTrace ray through right child

Merge lists of intersections/intervals byMerge lists of intersections/intervals by
applying CSG operator of current nodeapplying CSG operator of current node

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

CSG Example - golf ballCSG Example - golf ball

b
a

c
a b

c




a

b

a-b c

(a-b) - c

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Some CSG DetailsSome CSG Details

Each interval endpoint associated withEach interval endpoint associated with

intersection of ray with some surfaceintersection of ray with some surface

Normal computed from surface ofNormal computed from surface of

intersectionintersection

Material parameters may come from eitherMaterial parameters may come from either

primitiveprimitive

