
1

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Ray Casting

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Ray Casting Algorithm

For each pixel

1. Compute ray from eye through pixel

2. For each primitive

—Test for ray-object intersection

3. Shade pixel using nearest primitive (or set to
background color)

2

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Computing the Rays

Choose eye point, view direction, up
direction, fields of view (x and y)

pt = eye + t*v (v typically normalized)

Compute rays to two opposite corners

Compute step sizes, ∆∆x and ∆∆y to go from
pixel to pixel

To compute new ray: take step, then
normalize

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

2D ray calculation

view
direction

eye

θ θ

pixels on view plane

va vb

view is normalized
 view direction

right = (viewy, -viewx)
va = view - tanθ ∗ right
vb = view + tanθ * right
step = (vb - va) / num_pixels
v0 = va + step / 2
vi = vi-1 + step

In 3D, we have an additional
step size and field-of-view
angle as well as an up vector.

Note: take equal-sized steps in
viewing plane, not equal angles!

3

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Computing Intersections

Ray is in parametric form (t is parameter)

Represent primitive in implicit form:
f(x,y,z) = 0

(any (x,y,z) on surface evaluates to zero)

Substitute (x,y,z) of ray into f(x,y,z) and
solve for t
• degree n implicit function will be degree n in t

• quadric surfaces may be solved with quadratic
equation -- pick real solution closest to eye

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Example Quadric Functions

Sphere: (x-a)2 + (y-b)2 + (z-c)2 - r2 = 0

Circular cylinder (parallel to z-axis):

(x-a)2 + (y-b)2 - r2 = 0

Hyperbolic paraboloid:

y2/b2 - x2/a2 - z = 0

4

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

General Quadrics

General quadric has form:

Ax2 + 2Bxy + 2Cxz + 2Dx + Ey2 + 2Fyz +
2Gy + Hz2 + 2Iz + J = 0
or...
xtQx = 0, where xt = [x y z 1] and

 Q = A B C D
 B E F G

 C F H I
 D G I J

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Quadric Intersections

Quadric: xtQx = 0

Ray: x = p + tv
Substituting ray for x:

(p + tv)tQ(p + tv) = 0

ptQp + ptQtv + tvtQp + tvtQtv = 0
(vtQv)t2 + (ptQv + vtQp)t + ptQp = 0

(vtQv)t2 + (2vtQp)t + ptQp = 0

(Q is symmetric)

5

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Common Ray-tracing Primitives

Sphere, ellipsoid

Cylinders

Plane, triangle

• Ax + By + Cz + D = 0

Torus

Bezier/Nurbs patches

• parametric, so use implicit form of ray

—intersection of two planes

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Local Illumination Shading

Compute normal at closest intersection

• ∇∇f = (∂∂x, ∂∂y, ∂∂z) is normal vector field for
implicit function, f

For each light

• Use position and normal to compute light
contribution

• Accumulate light contributions

Color pixel

• Clamp to avoid overflow

6

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Shadows

Only add contribution from a light if it is
visible from the point (and vice versa)

• test for intersections along ray in L direction

• accumulate contribution if no occlusion

(illumination is no longer totally local)

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Truncating Primitives

Use another implicit function

• Test which side of the implicit function the
intersection is on

• Keep intersection only if it is on the correct
side

For example, truncate a cylinder using two
plane equations (or perhaps a sphere)

• then cap using the two planes truncated by the
cylinder

7

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Constructive Solid Geometry

Perform hierarchical set operations on
primitives

Union: ∪∪

Intersection: ∩∩

Difference: 

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

CSG Operators

Square ∪ Circle =

Square ∩ Circle =

Square  Circle =

8

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

CSG Hierarchy

Circle Rectangle

Circle∩


=

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Ray Tracing CSG

Each “object” may be a primitive or a CSG
hierarchy

Find all ray-primitive intersections for
hierarchy

Use CSG operators to determine which
intervals are solid or vacant

Use start of nearest solid interval as ray-
object intersection

9

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

CSG Tracing Algorithm

Start at root of CSG Hierarchy

Trace ray through left child - result is
ordered list of intersections, forming
solid and vacant intervals

Trace ray through right child

Merge lists of intersections/intervals by
applying CSG operator of current node

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

CSG Example - golf ball

b
a

c
a b

c




a

b

a-b c

(a-b) - c

10

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan Cohen

Some CSG Details

Each interval endpoint associated with

intersection of ray with some surface

Normal computed from surface of

intersection

Material parameters may come from either
primitive

