Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Components of a Tree

Node: stores a data element
Parent: single node that directly precedes a
node
* all nodes have 1 parent except root (has 0)
Child: one or more nodes that directly follow
a node
Ancestor: any node which precedes a node
* itself, its parent, or an ancestor of its parent
Descendent: any node which follows a node
* itself, its child, or a descendent of its child

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Examples of Trees

Directory tree
* Organizes directories and files hierarchically

* Directories are internal nodes, files are leaf
nodes (usually)

Class hierarchy
* Object is root, other classes are descendents
Decision tree

* Binary tree
¢ Path taken determined by boolean expression
Expression tree

* Operators are internal nodes, variables and
constants are leaf nodes

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What is a Tree?

Non-linear data structure
* Hierarchical arrangement of data

Has components named after natural trees
° root
* branches

* leaves

Drawn with root at the top

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

More Tree Terminology

Leaf (external) node: node with no children
Internal node: non-leaf node
Siblings: nodes which share same parent
Subtree: a node and all its descendents

* Ignoring the node’s parent, this is itself a tree

Ordered tree: tree with defined order of
children

* enables ordered traversal

Binary tree: ordered tree with up to two
children per node

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Comparison of Tree and List

List Tree
Start head root
# before 1 (prev) 1 (parent)
# after 1 (next) >=1 (children)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor:




Tree methods

root( ): returns root

parent(v): returns parent of v

children(v): returns iterator of children of v

size( ): returns number of nodes

elements( ): returns iterator of all elements
positions( ): returns iterator of all positions/nodes
swapElements(v,w): swaps elements at two nodes

replaceElement(v.e): replaces element of a node

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Depth of v is numbers of ancestors (excluding v)
* depth of root is 0

* depth of node is depth of parent plus 1
public static int depth (Tree T, Node v) {
if (T.isRoot(v)) return O;

else return 1 + depth(T, T.parent(v)) ;

} // running time? O(dJ

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Naive height algorithm

public static int heightl (Tree T) {

int h=0;
PositionIterator it = T.positions() ;
while (it.hasNext()) {

Position v = it.nextPosition() ;

if (T.isExternal (v))

h = Math.max(h, depth(T,v)); }

return h; } // running time? (o(n~2)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Tree query utility methods

isInternal(v): test if node is internal
isExternal(v): test if node is external

isRoot(v): test if node is root

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Height

Height of v is maximum path length of
subtree

* height of leaf node is 0

* height of internal node is maximum height of
children + 1

height of a tree is height of root or
maximum depth of a leaf

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Efficient height algorithm

public static int height2 (Tree T, Position v) {
if (T.isExternal (v)) return 0
else {
int h=0;
PositionIterator children = T.children (v) ;
while (children.hasNext())
h = Math.max(h,
height2 (T,children.nextPosition())) ;
return 1 + h; }
} // running time?
O(n): each node visited once

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor:




Traversal , Preorder Traversal

| Visit node, then visit children |

public void preorder (Tree T, Position v)
{
Ordered way of visiting all nodes of tree TR () 5
(jonvertslﬁerarchyinto alinearsequence PositionIterator children = T.children (v) ;
while (children.hasNext())

preorder (children.nextPosition()) ;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Preorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Preorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Preorders Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Preorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




Preorder Example ] Preorder Example

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor: Jonathan Cohen

Preorder Example Preorders Example

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor: Jonathan Cohen

Preorder Example : : Preorder Example

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor: Jonathan Cohen




Preorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Preorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Preorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Traversal

[ Visit children, then visit node |

public void postorder (Tree T, Position wv)
{
PositionIterator children = T.children (v) ;
while (children.hasNext())
postorder (children.nextPosition()) ;

visit(v) ;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




Postorder Example ] Postorder Example

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Example Postorder Example

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Example : ,] Postorder Example

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor: Jonathan Cohen




Postorder Example ] Postorder Example

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Example Postorder Example

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Example : ,] Postorder Example

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor: Jonathan Cohen




Postorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

In-class Exercises...

(Paper and pencil recommended)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Postorder Example

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Preorder Letter Scramble

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




Binary Tree

Each node has no more than 2 children

* Proper binary tree: each node has either 0 or 2
children

Johns Hopkins Department of Computer Science

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Course 600.226: Data Structures, Professor: Jonathan Cohen

Binary Tree ADT Binary Tree Traversal

leftChild(v): returns left child of v Preorder: node, left, right
rightChild(v): returns right child of v Postorder: left, right, node

sibling(v): returns sibling of v Inorder: left, node, right

Johns Hopkins Department of Computer Science

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Course 600.226: Data Structures, Professor: Jonathan Cohen

Euler Tour Traversal &1 Euler Tour

public void eulerTour (Tree T,
position v) ({
visitPre (T,v) ;
Generalizes preorder, inorder, and postorder L2 i nsZR ()
eulerTour (T, T.leftChild(w)) ;
visitIn(T,v) ;
if (T.hasRight(v)
eulerTour (T, T.rightChild(wv)) ;
visitPost (T,v); return; }

Visit each internal node 3 times

Johns Hopkins Department of Computer Science Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen Course 600.226: Data Structures, Professor:




Template Method Pattern

Implement template or skeleton method for
high-level algorithm

Extend the template’s class to override
lower-level methods

EulerTour example

* Override methods for visitPre, visitIn, and
visitPost

Binary Tree Properties

(proper) Binary tree T of height h
* h+1 < external nodes < 2h
* h < internal nodes < 2h-1
—2h+1 < total nodes < 2M*1-1
Slog(n+1)-1 < h < (n-1)/2

* external nodes = internal nodes+1

“omputer Science
onathan Cohen

Useful Binary Tree Definitions

Level d: All nodes in a binary tree at depth d

> Maximum of 27 nodes in level d

Complete binary tree: tree of height & with 2"
leaf nodes

» 2/-1 internal nodes

* 2/*1_1 total nodes

ter Science
Jonathan Cohen

Implementing| Binary Tree

Linked

» Each node references left, right, and parent as
well as element

Vector-based
* Number nodes in level order
* Store nodes at rank according to number
—Storage allocated for entire complete tree

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




