

What is a Graph?

(in computer science, it's not a data plot)
General structure for representing positions with an arbitrary connectivity structure

- Collection of vertices (nodes) and edges (arcs)
-Edge is a pair of vertices - it connects the two vertices, making them adjacent
- A tree is a special type of graph!

What can graphs represent?

City map

Computer network
Transportation system
Electrical wiring
etc.

What can we do with graphs?

Find a path from one place to another
Find the shortest path from one place to another

Find the "weakest link"

- check amount of redundancy in case of failures

Draw them

Types of Graphs

Undirected / directed

- Edges are symmetric / one-way

Acyclic

- no path of unique edges starts and ends at same vertex
Connected
- There is a path between each pair of nodes

Forest: acyclic graph
Tree: connected forest (not necessarily rooted)

(undirected) Graph ADT

numVertices(), numEdges(): return \# of vertices or edges vertices(), edges(): return iterator of vertices or edges degree(v): return \# of incident edges on a vertex incidentEdges (v) : return iterator of incident edges on vertex endVertices (e) : return two vertices of edge e opposite (v, e) : return endpoint of e that is not v $\operatorname{areAdjacent}(v, w)$: return whether an edge connects v to w insertEdge (v, w, o) : create and return an edge between v and w storing object o
insertVertex (o) : insert and return new vertex storing o removeVertex(v): remove vertex v and its adjacent edges removeEdge (e) : remove edge e

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Cohen

Concrete graph representations

Edge List: simple but inefficient in time
Adjacency List: moderately simple and efficient

Adjacency Matrix: simple but inefficient in space

Edge List

Container (list/vector/dictionary) of vertices

- Each vertex just has its object

Container (list/vector/dictionary) of edges

- Each edge has its object
- Edge also has references to its two endpoint vertices

Adjacency List

Similar to Edge List

Each vertex also has container of references to incident edges
$\operatorname{areAdjacent}(v, w): \quad O(m)$
removeEdge (e) : $\quad O(1)$
removeVertex (v) : $\quad \boldsymbol{O}(\boldsymbol{m})$

vertices():	$O(n)$
edges():	$O(m)$
endVertices $(e):$	$O(1)$
incidentEdges $(v):$	$O(m)$
areAdjacent $(v, w):$	$O(m)$
removeEdge $(e):$	$O(1)$
removeVertex $(v):$	$O(m)$

Johns Hopkins Department of Computer Science
course 600.226: Data Structures. Professor. Jonathan Cohen
Johns Hopkins Department of Computer Science
Con 60026 Data Structures Professor: Jonathan Cohen

Adjacency list (linked list) efficiency	
vertices() :	$O(n)$
edges():	$O(m)$
endVertices(e):	$O(1)$
incidentEdges (v) :	$O(\operatorname{deg}(\nu))$
areAdjacent (\boldsymbol{v}, w):	$O(\min (\operatorname{deg}(\nu), \operatorname{deg}(w))$
removeEdge(e):	$\underset{e=(u, v)}{O(\operatorname{deg}(u)+\operatorname{deg}(v))}$
removeVertex (v) :	$O\left(\operatorname{deg}(v)+\sum_{u \in \operatorname{adj}(v)} \operatorname{deg}(u)\right)$
(note: the last two are incorrect in the textbook)	

Adjacency Matrix

Extend edge list with $v \mathbf{x} v$ array

- each entry holds null reference or reference to edge connected vertex i to vertex j

Adjacency Matrix efficiency

vertices(): $\quad O(n)$
edges(): $\quad O(m)$
endVertices (e) : $\quad O(1)$
incidentEdges (v) : $\quad O(n)$
$\operatorname{areAdjacent}(v, w): \quad O(1)$
removeEdge (e) : $\quad O(1)$
removeVertex (v) : $\quad O\left(n^{2}\right)$

- perhaps $O(n)$ with amortization

Johns Hopkins Department of Computer Science Course 600.226: Data Structures. Professor: Jonathan Cohen

Traversing Graphs

Traversal visits all nodes and edges of graph (preferably in linear time)

- Depth-first search
- Breadth-first search
\qquad

Performance of DFS

Each vertex is visited exactly once
Each edge is used exactly once
Each edge is considered exactly twice

Run time is $O(n+m)$
f w is unvisited then
label e as tree edge
DFS (G, w)
else
label as back edge

- Visit node, then recursively visit children
- Visit node, then recursively visit children other paths
First, label all vertices and edges as unvisited DFS (G, v)
for all edges, e, in G.incidentEdges (v) do
if e is unvisited then
$w=G$.opposite (v, e)
$w=G$.opposite $v, ~$
if w is unvisited then
w is unvis tree edge

Johns Hopkins Department of Computer Science
Course 600 226 . Data Structures. Professor
Johns Hopkins Department of Computer Science
Grse 600 226: Data Structures. Professor: Jonathan Cohen

Uses for DFS

All \boldsymbol{n} nodes and \boldsymbol{m} edges are visited

- if graph is not connected, all nodes and edges in connected component are visited

Useful for:

- Find a spanning tree of a graph

Breadth-first search

Basic approach

- Visit a node, then put all its children on a queue to be visited
- Visit nodes in order of queue
-visits "close" nodes first, then "farther" nodes
$\operatorname{BFS}(\mathbf{G}, \mathbf{s})$
mark all vertices and edges unvisited
Initialize queue, Q to contain vertex, s
while not Q.isEmpty () do
$v=Q$. dequeue (), mark v visited
for each edge, e of v do
if e is unvisited then
$w=G$.other ($v, e)$
if w is unvisited then
label e as tree edge, Q.enqueue (w)
- Find all connected components of a graph
- Finding a cycle (if any) in a graph
else label e as cross edge
Johns Hopkins Department of Computer Science
Course 600.226: Data Structures. Professor: Jonathan Cohen
Course 600.226: Data Structures, Professor: Jonathan Cohen

