
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

GraphsGraphs

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What is a Graph?What is a Graph?

(in computer science, it’s not a data plot)(in computer science, it’s not a data plot)

General structure for representing positions General structure for representing positions
with an arbitrary connectivity structurewith an arbitrary connectivity structure

•• Collection of Collection of verticesvertices (nodes) and (nodes) and edgesedges (arcs)(arcs)

——Edge is a pair of vertices Edge is a pair of vertices -- it connects the it connects the
two vertices, making them two vertices, making them adjacentadjacent

•• A tree is a special type of graph!A tree is a special type of graph!

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What can graphs represent?What can graphs represent?

City mapCity map

Computer networkComputer network

Transportation systemTransportation system

Electrical wiringElectrical wiring

etc.etc.

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What can we do with graphs?What can we do with graphs?

Find a Find a pathpath from one place to anotherfrom one place to another

Find the Find the shortest pathshortest path from one place to from one place to
anotheranother

Find the “weakest link”Find the “weakest link”

•• check amount of redundancy in case of failurescheck amount of redundancy in case of failures

Draw themDraw them

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Types of GraphsTypes of Graphs

Undirected / directedUndirected / directed
•• Edges are symmetric / oneEdges are symmetric / one--wayway

AcyclicAcyclic
•• no path of unique edges starts and ends at no path of unique edges starts and ends at

same vertexsame vertex
ConnectedConnected

•• There is a path between each pair of nodesThere is a path between each pair of nodes
Forest: acyclic graphForest: acyclic graph
Tree: connected forest (not necessarily Tree: connected forest (not necessarily

rootedrooted))
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

(undirected) Graph ADT(undirected) Graph ADT

numVerticesnumVertices(), (), numEdgesnumEdges(): return # of vertices or edges(): return # of vertices or edges
vertices(), edges(): return vertices(), edges(): return iteratoriterator of vertices or edgesof vertices or edges
degree(degree(vv): return # of incident edges on a vertex): return # of incident edges on a vertex
incidentEdges(incidentEdges(vv): return): return iteratoriterator of incident edges on vertexof incident edges on vertex
endVertices(endVertices(ee): return two vertices of edge): return two vertices of edge ee
opposite(opposite(vv, , ee): return endpoint of): return endpoint of ee that is not that is not vv
areAdjacent(areAdjacent(vv, , ww): return whether an edge connects): return whether an edge connects vv to to ww
insertEdge(insertEdge(vv, , ww, , oo): create and return an edge between): create and return an edge between vv and and

ww storing object storing object oo
insertVertex(insertVertex(oo): insert and return new vertex storing): insert and return new vertex storing oo
removeVertex(removeVertex(vv): remove vertex): remove vertex vv and its adjacent edgesand its adjacent edges
removeEdge(removeEdge(ee): remove edge): remove edge ee

2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Concrete graph representationsConcrete graph representations

Edge List: simple but inefficient in timeEdge List: simple but inefficient in time

Adjacency List: moderately simple and Adjacency List: moderately simple and
efficientefficient

Adjacency Matrix: simple but inefficient in Adjacency Matrix: simple but inefficient in
spacespace

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Edge ListEdge List

Container (list/vector/dictionary) of verticesContainer (list/vector/dictionary) of vertices

•• Each vertex just has its objectEach vertex just has its object

Container (list/vector/dictionary) of edgesContainer (list/vector/dictionary) of edges

•• Each edge has its objectEach edge has its object

•• Edge also has references to its two endpoint Edge also has references to its two endpoint
verticesvertices

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Edge list (linked list) efficiencyEdge list (linked list) efficiency

vertices() : vertices() : OO((nn))
edges(): edges(): OO((mm))
endVertices(endVertices(ee):): OO(1)(1)
incidentEdges(incidentEdges(vv):): OO((mm))
areAdjacent(areAdjacent(vv, , ww):): OO((mm))
removeEdge(removeEdge(ee):): OO(1)(1)
removeVertex(removeVertex(vv):): OO((mm))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Adjacency ListAdjacency List

Similar to Edge ListSimilar to Edge List

Each vertex also has container of references Each vertex also has container of references
to incident edgesto incident edges

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Adjacency list (linked list) Adjacency list (linked list)
efficiencyefficiency

vertices() : vertices() : OO((nn))
edges(): edges(): OO((mm))
endVertices(endVertices(ee):): OO(1)(1)
incidentEdges(incidentEdges(vv):): OO(deg((deg(vv))))
areAdjacent(areAdjacent(vv, , ww):): OO(min(deg((min(deg(vv), deg(), deg(ww))))
removeEdge(removeEdge(ee):): OO(deg((deg(uu)+deg()+deg(vv))))

ee = (= (uu,,vv))

removeVertex(removeVertex(vv):): OO(deg((deg(vv) +) + Σ deg(deg(uu))))
uu ∈ adj(adj(vv))

(note: the last two are incorrect in the textbook)(note: the last two are incorrect in the textbook)
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Adjacency MatrixAdjacency Matrix

Extend edge list with Extend edge list with vv x x vv arrayarray

•• each entry holds null reference or reference to each entry holds null reference or reference to
edge connected vertex edge connected vertex ii to vertex to vertex jj

3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Adjacency Matrix efficiencyAdjacency Matrix efficiency

vertices() : vertices() : OO((nn))
edges(): edges(): OO((mm))
endVertices(endVertices(ee):): OO(1)(1)
incidentEdges(incidentEdges(vv):): OO((nn))
areAdjacent(areAdjacent(vv, , ww):): OO(1)(1)
removeEdge(removeEdge(ee):): OO(1)(1)
removeVertex(removeVertex(vv):): OO((nn22))

•• perhaps perhaps OO((nn) with amortization) with amortization

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Traversing GraphsTraversing Graphs

Traversal visits all nodes and edges of graph Traversal visits all nodes and edges of graph
(preferably in linear time)(preferably in linear time)

•• DepthDepth--first searchfirst search

•• BreadthBreadth--first searchfirst search

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

DepthDepth--first Search (DFS)first Search (DFS)

Basic approachBasic approach
•• Visit node, then recursively visit childrenVisit node, then recursively visit children
•• Traverse a path all the way to deadTraverse a path all the way to dead--end before traversing end before traversing

other pathsother paths

First, label all vertices and edges as unvisitedFirst, label all vertices and edges as unvisited
DFS(G, v)DFS(G, v)

for all edges, for all edges, ee, in , in G.incidentEdges(G.incidentEdges(vv) do) do
if e is unvisited thenif e is unvisited then

ww = G.opposite(= G.opposite(vv, , ee))
if if ww is unvisited thenis unvisited then

label label ee as as tree edgetree edge
DFS(DFS(GG, , ww))

elseelse
label as label as back edgeback edge

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Performance of DFSPerformance of DFS

Each vertex is visited exactly onceEach vertex is visited exactly once

Each edge is used exactly onceEach edge is used exactly once

Each edge is considered exactly twiceEach edge is considered exactly twice

Run time is Run time is OO((nn + + mm))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Uses for DFSUses for DFS

All All nn nodes and nodes and mm edges are visitededges are visited

•• if graph is not connected, all nodes and edges in if graph is not connected, all nodes and edges in
connected component are visitedconnected component are visited

Useful for:Useful for:

•• Find a Find a spanning treespanning tree of a graphof a graph

•• Find a path between two verticesFind a path between two vertices

•• Find all connected components of a graphFind all connected components of a graph

•• Finding a cycle (if any) in a graphFinding a cycle (if any) in a graph
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

BreadthBreadth--first searchfirst search
Basic approachBasic approach

•• Visit a node, then put all its children on a queue to be visitedVisit a node, then put all its children on a queue to be visited
•• Visit nodes in order of queueVisit nodes in order of queue

——visits “close” nodes first, then “farther” nodesvisits “close” nodes first, then “farther” nodes
BFS(G, s)BFS(G, s)

mark all vertices and edges unvisitedmark all vertices and edges unvisited
Initialize queue, Initialize queue, QQ to contain vertex, to contain vertex, ss
while not while not QQ.isEmpty.isEmpty() do() do

vv = = Q.dequeueQ.dequeue(), mark (), mark vv visitedvisited
for each edge, for each edge, ee of of vv dodo

if if ee is unvisited thenis unvisited then
ww = G.other(= G.other(v, ev, e))
if if ww is unvisited thenis unvisited then

label label ee as tree edge, as tree edge, Q.enqueue(Q.enqueue(ww))
else label else label ee as as crosscross edgeedge

