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Abstract— An overview is presented of the medical image
processing literature on mutual information based registra-
tion. The aim of the survey is threefold: an introduction for
those new to the field, an overview for those working in the
field and a reference for those searching for literature on a
specific application. Methods are classified according to the
different aspects of mutual information based registration.
The main division is in aspects of the methodology and of
the application. The part on methodology describes choices
made on facets such as preprocessing of images, grey value
interpolation, optimization, adaptations to the mutual in-
formation measure and different types of geometrical trans-
formations. The part on applications is a reference of the
literature available on different modalities, on interpatient
registration and on different anatomical objects. Compar-
ison studies including mutual information are also consid-
ered. The paper starts with a description of entropy and
mutual information and it closes with a discussion on past
achievements and some future challenges.
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I. INTRODUCTION

HERE are two things Collignon and colleagues and

Viola and Wells probably did not foresee when they
were working on a new idea in approximately 1994. First
of all, that someone else had the same idea. And secondly,
that this new idea would lead to a list of publications as
long as the one in this paper, in only seven years. This
survey covers the literature until spring 2002. Actually,
the “true” list is longer. In the first place, because we
have left out redundant publications and because we are
bound to have missed some publications. Secondly, mutual
information based registration has become common place
in many clinical applications. There is a wealth of papers
mentioning the use of the method as a step in a larger
method or in an application. These papers were generally
not included, except when the modality involved or the
application was unusual.

In the following we aim to introduce and explain mu-
tual information and to give an overview of the literature
on mutual information based registration for medical ap-
plications. We start at the basics, with the definition of
entropy and its interpretation. We then turn to mutual in-
formation, presenting its history in image registration, its
multiple forms of definition and its properties. For a recent
general introduction to and review of medical image regis-
tration, including many references to mutual information
based methods, we refer to [1,2].
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The survey classifies methods into two main categories:
methodological aspects and matters of application. The
aspects of the method are subdivided into preprocess-
ing, measure, transformation and implementation, most
of which have a further subclassification. Aspects of the
application entail the image modalities, the subject of reg-
istration (a single person or different persons) and the ob-
ject of registration (the imaged anatomy). We also classify
according to the image dimensionality and the number of
images involved in registration.

Finally, having considered a number of comparison stud-
ies, we discuss the results of seven years of research and also
some challenges that still lie ahead.

II. ENTROPY

The desire for a measure of information (commonly
termed entropy) of a message stems from communication
theory. This field concerns the broadcast of a message from
a sender to a receiver. The first attempts to arrive at an
information measure of a message focused on telegraph and
radio communication, sending Morse code or words. How-
ever, picture transmission (television) was already consid-
ered in the important paper by Hartley [3]. In 1928, he
defined a measure of information of a message that forms
the basis of many present-day measures. He considered a
message a string of symbols, with s different possibilities
for each symbol. If the message consists of n symbols, there
are s different messages possible (assuming there are no
syntactic rules). He sought to define an information mea-
sure that increases with message length. The measure s™
complies, but the amount of information would increase
exponentially with the length of the message and that is
not realistic. Hartley wanted a measure H that increases
linearly with n, i.e. H = Kn, where K is a constant de-
pending on the number of symbols s. He further assumed
that, given messages of length n; and no from s; and s
numbers of symbols, respectively, if s7* = s52, i.e. the
number of possible messages is equal, then the amount of
information per message is also equal. These two restric-
tions led him to define the following measure of information

(1)

as is shown in appendix A. Hartley’s information measure
depends on the number of possible outcomes: the larger
the number of possible messages, the larger the amount
of information you get from a certain message. If there
is only a single message possible, you gain no information
(log1 = 0) from it, because you already knew you would
receive that message. In this respect, the measure can also
be viewed as a measure of uncertainty. When there are

H = nlogs = logs",
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more different messages you could possibly receive, you are
more uncertain which one you will actually receive. And,
again, if there is only one, there is no uncertainty.

A drawback of Hartley’s measure is that it assumes all
symbols (and hence all messages of a given length) are
equally likely to occur. Clearly, this will often not be the
case. In the previous paragraph, for example, the letter
‘e’ has occurred 229 times and the letter ‘q’ only twice.
Shannon introduced an adapted measure in 1948 [4], which
weights the information per outcome by the probability of
that outcome occurring. Given events eq,...,e, occur-
ring with probabilities p1, ..., pm, the Shannon entropy is
defined as

1
H=)> p 10g17 = =Y pilog pi. (2)
. (3 .
K3 3
If we apply to Shannon’s entropy the assumption that all
outcomes are equally likely to occur, we get

1 1 1
H:fzs—nlogs—nzzs—nlogsnzlogs",

(3)
which is exactly Hartley’s entropy.

Although the second definition of the Shannon entropy
in equation (2) is more commonly used, the first one more
clearly explains the meaning. The term log L1 signifies
that the amount of information gained from an event with
probability p; is inversely related to the probability that
the event takes place. The more rare an event, the more
meaning is assigned to occurrence of the event. The infor-
mation per event is weighted by the probability of occur-
rence. The resulting entropy term is the average amount
of information to be gained from a certain set of events.

In line with Hartley’s entropy, we can also view Shan-
non’s entropy as a measure of uncertainty. The difference
is that Shannon’s measure depends not only on the number
of possible messages, but also on the chances of each of the
messages occurring. When all messages are equally likely to
occur, the entropy is maximal, because you are completely
uncertain which message you will receive. When one of
the messages has a much higher chance of being sent than
the other messages, the uncertainty decreases. You expect
to receive that one message and in most cases you will be
right. The amount of information for the individual mes-
sages that have a small chance of occurring is high, but,
on average, the information (entropy/uncertainty) is lower.
As a hypothetical example, let’s assume a one-year-old
child uses the words “mummy”, “daddy”, “cat” and “uh-
oh”. If the child uses all words almost as frequently, with a
slight preference for “mummy”, the respective percentages
of times the words are used could be 0.35, 0.2, 0.2, 0.25.
The entropy of the child’s language is then —0.351og0.35 —
0.2log0.2 — 0.21og0.2 — 0.25l0g0.25 = 1.96. Some time
later, the vocabulary may have expanded and changed to
(“mummy”, 0.05), (“daddy”, 0.05), (“cat”, 0.02), (“train”,
0.02), (“car”, 0.02), (“cookie”, 0.02), (“telly”, 0.02) and
(“no”, 0.8). Now one word is dominant and the entropy of

the language has dropped to 1.25. There is less uncertainty
about which word the child will utter. Whatever you ask,
the answer is almost certainly “no”.

The Shannon entropy can also be computed for an image,
in which case we do not focus on the probabilities of letters
or words occurring, but on the distribution of the grey val-
ues of the image. A probability distribution of grey values
can be estimated by counting the number of times each
grey value occurs in the image and dividing those numbers
by the total number of occurrences. An image consisting
of almost a single intensity will have a low entropy value; it
contains very little information. A high entropy value will
be yielded by an image with more or less equal quantities
of many different intensities, which is an image containing
a lot of information.

In this manner, the Shannon entropy is also a measure
of dispersion of a probability distribution. A distribution
with a single sharp peak corresponds to a low entropy
value, whereas a dispersed distribution yields a high en-
tropy value.

Summarizing, entropy has three interpretations: the
amount of information an event (message, grey value of a
point) gives when it takes place, the uncertainty about the
outcome of an event and the dispersion of the probabilities
with which the events take place.

III. MUTUAL INFORMATION
A. History

The research that eventually led to the introduction of
mutual information as a registration measure dates back to
the early 1990’s. Woods et al. [5, 6] first introduced a reg-
istration measure for multimodality images based on the
assumption that regions of similar tissue (and hence simi-
lar grey values) in one image would correspond to regions
in the other image that also consist of similar grey val-
ues (though probably different values to those of the first
image). Ideally, the ratio of the grey values for all corre-
sponding points in a certain region in either image varies
little. Consequently, the average variance of this ratio for
all regions is minimized to achieve registration.

Hill et al. [7] proposed an adaption of Woods’ mea-
sure. They constructed a feature space, which is a two-
dimensional plot showing the combinations of grey values
in each of the two images for all corresponding points. Fig-
ure 1 shows an example of such a feature space for an MR
and a CT image. The difference with Woods’ method is
that instead of defining regions of similar tissue in the im-
ages, regions are defined in the feature space. These regions
are based on the clustering one finds in the feature space
for registered images.

The feature space (or joint histogram) changes as the
alignment of the images changes. When the images are
correctly registered, corresponding anatomical structures
overlap and the joint histogram will show certain clusters
for the grey values of those structures. For example, the
cluster in the top left corner of the histogram in figure 1 is
the combination of background in both images. As the im-
ages become misaligned, structures will also start overlap-
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Fig. 1. Example of a feature space for a CT image (left) and an
MR image (middle). Along the axes of the feature space on the
right, the grey values of the two images are plotted: from left to
right for CT and from top to bottom for MR. The feature space
is constructed by counting the number of times a combination of
grey values occurs. For each pair of corresponding points (x,y),
with x a point in the CT image and y a point in the MR image,
the entry (IcT(x), IMr(y)) in the feature space on the right is
increased. A distinguishable cluster in the feature space is the
stretched vertical cluster, which is the rather homogeneous area
of brain in the CT image corresponding to a range of grey values
for the MR image.

ping structures that are not their anatomical counterparts
in the other image. Consequently, the intensity of the clus-
ters for corresponding anatomical structures will decrease
and new combinations of grey values emerge, such as skull
and brain or skin and background. This will manifest it-
self in the joint histogram by a dispersion of the clustering.
Figure 2 contains several histograms of an MR image with
itself for different rotations of one image with respect to the
other. Clearly, the histogram shows increasing dispersion
as the misregistration increases.

Using this characteristic of the joint histogram of two
images, measures of dispersion emerged, to use for im-
age registration. Hill et al. [8] proposed the third or-
der moment of the joint histogram, which measures the
skewness of a distribution. Both Collignon et al. [9] and
Studholme et al. [10] suggested to use entropy as a measure
of registration. As we have explained in section II, entropy
measures the dispersion of a probability distribution. It is
low when a distribution has a few sharply defined, domi-
nant peaks and it is maximal when all outcomes have an
equal chance of occurring. A joint histogram of two images
can be used to estimate a joint probability distribution of
their grey values by dividing each entry in the histogram
by the total number of entries. The Shannon entropy for a
joint distribution is defined as

fZ p(i, j) logp(i, ). (4)

By finding the transformation that minimizes their joint
entropy, images should be registered.

Once entropy, a measure from information theory, had
been introduced for the registration of multimodality
medical images, another such measure quickly appeared:
mutual information. It was pioneered both by Col-
lignon et al. [11,12] and by Viola and Wells [13-15]. Ap-
plied to rigid registration of multimodality images, mutual
information showed great promise and within a few years
it became the most investigated measure for medical image
registration.

B. Definition

Most books on information theory ([16-18], for example)
discuss the notion of mutual information. The definition
of the term, however, can be presented in various ways.
We will next treat three frequently used forms of the def-
inition, because more than one is used in the literature.
All three forms are identical; each can be rewritten into
the other two'. Each form of definition, however, explains
the relation to registration in a different way. We will de-
scribe mutual information for two images, as used in image
registration, and not in a general sense.

The first form of definition we discuss is the one that best
explains the term “mutual information”. For two images
A and B, mutual information I can be defined as

I(A,B) = H(B) — H(B[A), (5)
where H(B) is the Shannon entropy of image B, computed
on the probability distribution of the grey values. H(B|A)
denotes the conditional entropy, which is based on the con-
ditional probabilities p(b|a), the chance of grey value b in
image B given that the corresponding voxel in A has grey
value a. When interpreting entropy as a measure of un-
certainty, equation (5) translates to “the amount of uncer-
tainty about image B minus the uncertainty about B when
A is known”. In other words, mutual information is the
amount by which the uncertainty about B decreases when
A is given: the amount of information A contains about B.
Because A and B can be interchanged, I(A, B) is also the
amount of information B contains about A. Hence, it is
mutual information. Registration is assumed to correspond
to maximizing mutual information: the images have to be
aligned in such a manner that the amount of information
they contain about each other is maximal.

The second form of definition is most closely related to
joint entropy. It is
I(A,B) = H(A) + H(B) — H(A,B). (6)
This form contains the term —H (A, B), which means that
maximizing mutual information is related to minimizing
joint entropy. We have described above how the joint his-
togram of two images’ grey values disperses with misregis-
tration and that joint entropy is a measure of dispersion.
The advantage of mutual information over joint entropy
per se, is that it includes the entropies of the separate im-
ages. Mutual information and joint entropy are computed
for the overlapping parts of the images and the measures
are therefore sensitive to the size and the contents of over-
lap. A problem that can occur when using joint entropy
on its own, is that low values (normally associated with a
high degree of alignment) can be found for complete mis-
registrations. For example, when transforming one image
to such an extent that only an area of background over-
laps for the two images, the joint histogram will be very

1We conjecture that the identity of the three definitions only holds
for the Shannon entropy and we invite anyone to prove of refute this
hypothesis.
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Fig. 2. Joint grey value histograms of an MR image with itself. The leftmost histogram shows the situation when the images are registered.
Because the images are identical, all grey value correspondences lie on the diagonal. The three following are the resulting histograms
when one MR image is rotated with respect to the other by angles of 2, 5 and 10 degrees respectively. Below the histograms are the

corresponding joint entropy values.

sharp. There is only one peak, that of background. Mutual
information is better equipped to avoid such problems, be-
cause it includes the marginal entropies H(A) and H(B).
These will have low values when the overlapping part of
the images contains only background and high values when
it contains anatomical structure. The marginal entropies
will thus balance the measure somewhat by penalizing for
transformations that decrease the amount of information
in the separate images. Consequently, mutual information
is less sensitive to overlap than joint entropy, although not
completely immune.

The final form of definition we discuss is related
to the Kullback-Leibler distance, which is defined as
>, p(i)log %, for two distributions p and ¢. It is a mea-
sure of the distance between two distributions. Analogous
to the Kullback-Leibler measure, the mutual information
of images A and B is defined as

I(A,B) = Y pla,b) log p(a,b) (7)

2 p(a)p(b)

The interpretation of this form is that it measures the dis-
tance between the joint distribution of the images’ grey
values p(a,b) and the joint distribution in case of indepen-
dence of the images, p(a)p(b). It is a measure of depen-
dence between two images. The assumption is that there
is maximal dependence between the grey values of the im-
ages when they are correctly aligned. Misregistration will
result in a decrease in the measure.

C. Properties
Mutual information has the following properties [16]:

It is symmetric; otherwise it would not be mutual informa-
tion. However, although it is a logical property in theory,
mutual information is not symmetric in practice. Imple-
mentational aspects of a registration method, such as in-
terpolation and number of samples, can result in differences
in outcome when registering A to B or B to A.

(ii) I(A,A) = H(A)
The information image A contains about itself is equal to
the information (entropy) of image A.
(i) I(A,B) < H(A),
I(A,B) < H(B)

The information the images contain about each other can
never be greater than the information in the images them-
selves.

(iv) I(A,B) > 0
The uncertainty about A cannot be increased by learning
about B.

(v) I(A,B) = 0if and only if A and B are independent.
When A and B are not in any way related, no knowledge
is gained about one image when the other is given.

IV. SURVEY OF LITERATURE

For our survey of the different aspects of mutual infor-
mation based registration, we have defined a classification
scheme, which builds on earlier schemes for medical image
registration in general [19,20]. The mutual information
scheme is presented in table I.

The main subdivision of the classification is in aspects
concerning the method and those concerning the applica-
tion. In addition, the classes image dimensionality and
number of images are defined. The elements of these two
subclasses can concern purely the application, but they can
also necessitate an adaptation of the method. They are
therefore treated separately. The class ‘Method’ can be
further subdivided into preprocessing, measure, transfor-
mation and implementation. Preprocessing entails any im-
age processing to prepare or improve the images for regis-
tration. Typical examples are filtering to remove noise, ex-
traction of regions of interest and isotropic resampling. The
measure will obviously be (based on) mutual information,
but differences are possible, characterized by the choice of
entropy, by normalization and by adaptations to incorpo-
rate spatial information. The transformation can be classi-
fied as either rigid (rotations and translations only), affine
(rigid plus scaling and shearing), perspective (affine with-
out preservation of parallelism of lines) or curved. Imple-
mentation is an important category, because the choice of
method for interpolation, probability distribution function
(pdf) estimation, optimization and acceleration can have a
substantial influence on the registration results.

The first aspect of the class ‘Application’ is the type of
modalities it concerns. The images can be of the same kind
(monomodality), acquired by different techniques (multi-
modality), a type of model can be involved (a phantom
or atlas, for example) or images are registered to physi-
cal space. By the latter we mean registration of previ-
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TABLE 1
CLASSIFICATION SCHEME FOR MUTUAL INFORMATION BASED REGISTRATION METHODS.

Method Application

Preprocessing Modalities

Measure monomodality
entropy multimodality
normalization modality to model

spatial information modality to physical space

Transformation Subject
rigid intrasubject
affine intersubject
perspective model
curved

Implementation Object
interpolation
pdf estimation
optimization
acceleration

Image dimensionality Number of images
2D/2D 2
3D/3D > 2, with known inter-image geometry
2D/3D > 2, with unknown inter-image geometry

ously acquired images to a person, as is used for image-
guided surgery or radiotherapy treatment. Subject denotes
whether images of a single person are involved, which is
called intrasubject registration, or images of different per-
sons, intersubject registration, or whether images of a per-
son are matched to a model. Lastly, the anatomy that the
registration focuses on is what we term object.

Of image dimensionality we have found instances of
2D/2D, 3D/3D and 2D/3D registration in the literature.
The number of images involved in the registration is usu-
ally 2, but registration of more than 2 images has been
described in a number of publications. The latter aspect
can be further divided into registration problems where
the transformations between several images are known and
only a single transformation is to be found or problems that
require several transformations.

In the following, we will discuss most categories of our
scheme. Some aspects are so dominant in the literature (for
example, 3D /3D registration), that we will only review the
exceptions. We have also taken the liberty to focus on the
aspects that we find most interesting. After the classifi-
cation scheme, we will consider a number of comparison
studies.

A. Preprocessing

Several techniques of processing images before registra-
tion have been described. The most common preprocess-
ing step is defining a region [21,22] or structures [23-38]
of interest in the images to exclude structures that may

negatively influence the registration results. Other process-
ing techniques reported include low-pass filtering to remove
speckle in ultrasound images [33,38-40] and thresholding
or filtering to remove noise [41,42]. Blurring is also applied
to correct for differences in the intrinsic resolution of the
images [34, 43-45]. Intensity inhomogeneities in images are
corrected in several methods, both for MR images [29, 46]
and for portal images [47]. Some methods resample the im-
ages isotropically, to achieve similar voxel sizes in all image
dimensions [21, 35,43, 44,48, 49], others resample to obtain
similar voxel sizes in the images to be registered [22].

B. Measure

Obviously, in a literature survey on mutual information
based image registration, the measure in question will al-
ways be mutual information. However, when using a def-
inition of mutual information based on entropy, different
definitions of entropy can be chosen. Furthermore, several
adaptations of mutual information have been proposed:
normalization with respect to the overlapping part of the
images and inclusion of spatial information.

A few recently proposed methods do not adapt the mu-
tual information measure, but cannot be considered stan-
dard implementations either. Butz and Thiran [50] com-
pute feature images (gradients) of which the mutual infor-
mation is calculated. Nyul et al. [51] evaluate the mutual
information of “scale images”: the value of a voxel is the
radius of the largest sphere which is centred at the voxel
and which falls completely within a single object.
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B.1 Entropy

By far the most common measure of entropy in the pa-
pers in this survey is the Shannon entropy [4]. Rodriguez
and Loew [52,53] use the Jumarie entropy [54]. The Ju-
marie entropy is defined for one-dimensional signals and re-
sembles a normalized version of Shannon entropy, applied
not to a probability distribution, but to function value dif-
ferences of neighbouring samples. In [52], two-dimensional
images are registered. The authors define the Jumarie en-
tropy of a 2D image on the gradient magnitude of pixels.
The joint Jumarie entropy is defined on the grey value dif-
ference of corresponding pixels, which presumably makes
the measure less suitable to registration of multimodality
images. loannides et al. [55] use the Rényi entropy of or-
der 4, although not for image registration, but for com-
parison of brain activity during different tasks. The Rényi
entropy of order 2 is employed by Pompe et al. [56] to mea-
sure the strength of dependence between 1D respiratory
and cardiac signals.

B.2 Normalization

The size of the overlapping part of the images influences
the mutual information measure in two ways. First of all, a
decrease in overlap decreases the number of samples, which
reduces the statistical power of the probability distribu-
tion estimation. Secondly, Studholme et al. [43,44] have
shown that with increasing misregistration (which usually
coincides with decreasing overlap) the mutual information
measure may actually increase. This can occur when the
relative areas of object and background even out and the
sum of the marginal entropies increases, faster than the
joint entropy. Studholme et al. proposed a normalized mea-
sure of mutual information [44], which is less sensitive to
changes in overlap:

H(A)+ H(B)

NMI(A, B) = H{A D)

They found a distinct improvement in the behaviour of the
normalized measure for rigid registration of MR-CT and
MR-PET images.

Collignon [11] and Maes [57] have suggested the use of
the Entropy Correlation Coefficient (ECC'), another form
of normalized mutual information. NMI and ECC are
related in the following manner: ECC =2 — 2/NMI.

Normalized mutual information was used in a large num-
ber of studies [24, 26, 30, 32, 36,37, 42,48, 58-77].

An upper bound of mutual information was derived by
Skouson et al. [78].

B.3 Spatial information

A drawback of mutual information as it is commonly
used, i.e. based on the Shannon entropy, is that the de-
pendence of the grey values of neighbouring voxels is ig-
nored. The original Shannon entropy [4] does include a
dependence of preceding signals, but the definition used in
practice is the one for independent successive signals. The
assumption of independence does not generally hold for

medical images. Incorporating the dependence of the grey
values of neighbouring voxels, what we term the spatial
information of the images, could improve registration.

As mentioned, Rodriguez and Loew [52] employ the Ju-
marie entropy, which considers the grey value differences
of neighbouring voxels in an image. Studholme et al. [79]
compute the mutual information of two images together
with a labelling of one of the images. Voxels with identical
grey values can then be differentiated when they belong
to different regions. The use of a cooccurrence matrix has
been put forth by Rueckert et al. [80]. The cooccurrence
matrix of distance d of an image is a 2D histogram giving
the frequencies of two grey values in the image being dis-
tance d apart. Rueckert et al. show the effect the method
has on curved registration of MR images. Another method
of incorporating spatial information is to combine mutual
information with a measure based on the gradients at cor-
responding points. The measure seeks to align gradient
vectors of large magnitude as well as of similar orienta-
tion [69,81]. A slightly adapted version of the measure is
used by Létjonen and Mékeld for curved registration [82].

C. Transformation

The transformation applied to register the images can
be categorized according to the degrees of freedom. We
define a rigid transformation as one that includes only
translations and rotations. Although in the literature, rigid
transformations are sometimes allowed to include scaling,
we classify such transformations as affine. An affine trans-
formation can furthermore include shearing. This type of
transformation maps straight lines to straight lines and
preserves the parallelism between lines. The perspective
transformation differs from the affine transformation in the
sense that the parallelism of lines need not be preserved.
It is usually applied in 2D/3D registration. No instances
of ‘true’ perspective transformation were encountered. All
methods using a perspective transformation limited the op-
timization to the rigid-body or affine parameters; the pro-
jective parameters were kept fixed. The final class con-
sists of curved transformations, which allow the mapping
of straight lines to curves.

C.1 Rigid

Translations and rotations suffice to register images of
rigid objects. Examples include registration of bone or of
the brain when neither skull nor dura has been opened.
Rigid registration of images based on mutual information
has been applied in a large number of papers [11,12,21-23,
27,31,35,41,43-45,47,49,51,53,57,63,71,83-101]. Rigid
registration is also used to approximately align images that
show small changes in object shape (for example, successive
histological sections [102,103] and serial MR images [24,
26]) or small changes in object intensity, as in functional
MR time series images [93,104].
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C.2 Affine

The affine transformation preserves the parallelism of
lines, but not their lengths or their angles. It extends
the degrees of freedom of the rigid transformation with
a scaling factor for each image dimension [25,32, 58,105,
106] and, additionally, a shearing in each dimension [13,
28,38,99,107,108]. In [109,110] an affine registration with
nine degrees of freedom is performed to correct calibration
errors in the voxel dimensions. Holden [110] furthermore
measures the relative scaling error between scans. Shekhar
and Zagrodsky [33] compare registration of ultrasound im-
ages using transformations of increasing complexity (rigid,
rigid with uniform scaling, rigid with nonuniform scaling
and fully affine).

C.3 Curved

Curved registration methods can differ on several as-
pects. The mutual information measure can be calculated
globally, on the entire image, or locally, on a subimage.
Smoothness of the deformation can be achieved in differ-
ent ways and the deformation can be either free-form (any
deformation is allowed) or guided by an underlying physi-
cal model of material properties, such as tissue elasticity or
fluid flow. Besides these aspects, methods can also differ in
smaller, implementational details, but such differences will
not be discussed.

Meyer et al. [39,111-116] compute the mutual infor-
mation measure globally. The deformation is determined
by thin-plate splines through a number of control points,
which are initialized by the user, but are adapted automat-
ically. The number of control points defines the elasticity
of the deformation. Apart from registration of 3D multi-
modality images, the method was applied to warp a slice
into a volume, including out-of-plane deformations [117].
Also computing both measure and deformation globally
is Horsfield [118], who uses a third-order polynomial to
nonuniformly correct MR images for eddy current distor-
tion.

Other methods compute the mutual information glob-
ally, but find the deformation on a local scale. A grid of
control points is defined to determine the deformation, usu-
ally in a multiresolution manner. The points of the grid are
moved individually, defining local deformations. Transfor-
mations in between control points are propagated by linear
interpolation [29, 119], Gaussian kernels [120] or other sym-
metrical, convex kernels [82,121]. Rueckert et al. [74] and
Studholme et al. [37,76] calculate B-splines through the
control points, which have a local region of influence (as op-
posed to thin-plate splines). A similar method is employed
in [72,73,122]. The effect of the choice of transformation
(rigid, affine or curved) on registration of MR breast im-
ages was studied by Denton et al. [62]. The method by
Rueckert was adapted to allow for rigid structures within
deformable tissue by Tanner et al. [77], through fixation
of intercontrol point distances. A nonuniform deformation
grid of active and passive control points is described in [75].
Applications of the method include propagation of segmen-
tations [42,61] and the construction of a statistical defor-

mation model [123].

Contrary to the previous methods which compute mu-
tual information globally, some methods compute the mu-
tual information measure for subsets of the images [30,
46,60,65,124,125]. A problem with local computation of
mutual information is that the results can suffer from the
small number of samples. Usually, relatively large subim-
ages are required, which prohibits deformations on a very
small scale. Several adaptations have been proposed to
overcome this problem. Likar and Pernus [66] define local
probabilities as a weighted combination of the probabil-
ity distribution of a subimage and the global distribution.
Maintz et al. [126] compute a conditional probability dis-
tribution of intensities in one image given intensities in the
other image, based on a global joint histogram. Using the
conditional distribution, translations of subimages are com-
puted. Finally, Rueckert et al. [80] enhance the power of
locally computed measures by including spatial informa-
tion, in the form of cooccurrence matrices.

Hermosillo and Faugeras [127] compare global and local
computation of both mutual information and the correla-
tion ratio [128]. Schnabel et al. [129] propose a validation
method for curved registration which is demonstrated on
mutual information.

Most methods ensure smoothness of the deformation
field, by filtering of the vector field (e.g. [29,64-66,130])
and/or by regularization terms to constrain local defor-
mations (e.g. [29,30,36,74,75,82,125,127]). Rohlfing and
Maurer [73] incorporate a regularization term that prevents
compression of contrast-enhanced structures.

To the best of our knowledge, there are only two pa-
pers on inclusion of physical models of tissue deformation
in mutual information based curved registration methods.
Both Hata et al. [124] and Hermosillo and Faugeras [127]
use a model of an elastic solid material for regularization
of the deformation.

D. Implementation

The importance of the implementation of a mutual infor-
mation based method should not be underestimated, since
implementational decisions can have a large influence on
the registration results. The main choices involve inter-
polation, estimation of the probability distributions and
optimization. Additionally, one may choose to improve the
speed of registration. Zhu and Cochoff [101] study the in-
fluence of several implementation choices, viz. optimization
method, interpolation method, number of histogram bins
and multiresolution approaches. The choice of implemen-
tation remains a matter of debate. An optimal implemen-
tation has not been agreed on, partly because all aspects
of the implementation interact. For instance, one cannot
compare optimization methods without taking the other
aspects into account, because these influence the smooth-
ness of the function to be optimized.

D.1 Interpolation

When transforming points from one image to another,
interpolation is usually required to estimate the grey value
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of the resulting point. In this section we focus on interpo-
lation during the registration process, which is applied nu-
merous times and which, consequently, necessitates a trade-
off between accuracy and speed. In addition, interpolation
is required to yield a final, registered image. Since this task
is performed only once, speed is less of an issue and a dif-
ferent choice of interpolation method (e.g. a higher-order
method) may be more appropriate.

The most popular technique of interpolation is linear in-
terpolation, which defines the intensity of a point as the
weighted combination of the intensities of its neighbours.
The weights are linearly dependent on the distance be-
tween the point and its neighbours, as shown in the 2D
example in figure 3. A handful of papers report the use of
nearest neighbour interpolation (assigning the grey value
of the spatially closest neighbour), often for speed [32,47],
for comparison to other interpolation methods [57,101] or
for the initial testing of a novel idea [52].

ni n2
wa ws
T(x)
wo w1
ns nq

Fig. 3. Interpolation weights, the areas w;, for 2D linear interpola-

tion.

An interpolation method specifically designed to create
joint histograms of intensities is partial volume interpola-
tion, introduced by Collignon [12]. It uses the weights of
linear interpolation, but not to compute a weighted inten-
sity and update a single histogram entry, like linear inter-
polation. It uses the weights for fractional updates of the
histogram entries corresponding to a transformed point and
each of its neighbours. Effectively, this creates smoother
changes of the joint histogram for varying transformations
and hence a smoother registration function?. The method
has been adopted by several others [33,57,70, 88,96, 125].

Maes [92] introduced partial intensity interpolation.
This method calculates a weighted average of the neigh-
bouring grey values, identical to linear interpolation. Then,
however, two histogram entries (those corresponding to the
floor and the ceiling of the weighted average) are updated
by a fractional amount.

Thévenaz and Unser [97] are advocates of higher order
interpolation methods. They suggest cubic interpolation,
particularly in multiresolution methods. Cubic spline in-
terpolation is also used in [104,122]. Figure 4 shows 1D
interpolation kernels for linear, cubic and sinc interpola-
tion. Sinc interpolation is the ideal kernel in theory, but it
is impractical for two reasons: (i) the images are expected
to be band-limited, which medical images rarely are and
(ii) the width of the kernel is infinite. The cubic kernel has
a larger extent than linear interpolation and is therefore
more expensive to compute, but does approximate the sinc

2 The registration measure as a function of transformation.

kernel better. The influence of the order of the interpola-
tion method is studied by Netsch et al. [93].

1 1 1
08 08 08
06
04

02
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linear cubic sinc (truncated)

Fig. 4. Several 1D interpolation kernels.

A serious problem with interpolation is that it can cause
patterns of artefacts in the registration function. When the
grids of two images can be aligned for certain transforma-
tions, no interpolation is required for such transformations.
Because interpolation influences the value of the registra-
tion measure, the absence of interpolation — at grid-aligning
transformations — can cause a sudden change in the value
of the measure, resulting in a pattern of local extrema.
The occurrence of such patterns has been noted in several
publications [11,92,131]. In [132], the different patterns
created by linear and partial volume interpolation are ex-
tensively studied. Holden [110] describes the existence of
artefacts for both mutual information and the ratio image
uniformity [133] measures when using linear interpolation
and proposes low-pass filtering as a solution. Likar and
Pernus [66] try to overcome the severe artefacts in the reg-
istration functions of subimages, either by a random re-
sampling of the image grids or by including the probability
distribution of the entire images. Chen and Varshney [134]
employ a generalized partial volume interpolation method,
which is identical to partial volume interpolation using a
higher-order kernel instead of a first-order one. Interpola-
tion artefacts deserve serious attention, not only because
they can cause misregistrations, but also because they pro-
hibit subvoxel accuracy.

D.2 Probability distribution estimation

The most straightforward way to estimate the joint
probability distribution of intensities in two images is
to compute a joint histogram of intensities. FEach en-
try h(a,b) in the histogram denotes the number of times
intensity a in one image coincides with b in the other
image. Dividing the entries by the total number of
entries yields a probability distribution. The proba-
bility distributions for each image separately are found
by summing over the rows, resp. columns, of the his-
togram. This method is chosen in the majority of pa-
pers [12,22,32-36, 38,40, 44,45,47,51,52,57,58,66, 72, 74,
77,88,91,101,106,107,112,116,120, 121, 125,126, 134-136].
Camp and Robb [59] propose a method that better dis-
tributes the entries across all histogram bins.

Another frequently used method of distribution estima-
tion is Parzen windowing. Given a set S of n samples, the
probability p(x) of x occurring is the sum of the contribu-
tions of each sample s from S to p(z). The contributions
are functions of the distance between s and z. This results
in the following definition of the probability of x given a
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sample S

P(z, ) = % S Ww—s).

ses

The weighting function W is a Gaussian function in most
implementations described in the literature [83,96, 99, 100,
108,119,127]. Other choices are double exponential func-
tions [137] and splines [97,122].

Whereas the simple histogram method places a spike
function of value 1 at the bin corresponding to s and up-
dates only a single bin, Parzen windowing places a kernel
at the bin of s and updates all bins falling under the kernel
with the corresponding kernel value.

D.3 Optimization

The registration measure as a function of transformation
defines an n-dimensional function, with n the degrees of
freedom of the transformation. The optimum of this func-
tion is assumed to correspond to the transformation that
correctly registers the images. Unfortunately, the registra-
tion function is generally not a smooth function, but one
containing many local maxima. The local maxima can have
two different causes. Some represent a local good match of
the two images. Others are imperfections inherent to the
implementation, for example, local maxima can occur as a
result of interpolation or because of changes in the overlap-
ping part of the images. Local maxima in the registration
function can be reduced, among other things, by improving
implementation choices (e.g. a higher order interpolation
method), by filtering the images to reduce noise or by in-
creasing the bin size of the intensity histogram. Because of
the existence of local maxima, the choice of optimization
routine has a large influence on the results of the registra-
tion method, particularly on the robustness of the method
with respect to the initial transformation.

A second important property of the registration function
that influences the choice of optimization method is the
capture range of the optimum [1,2,35,44]. For intensity-
based registration measures it is possible that a large mis-
registration of two images results in a higher value of the
measure than the correct transformation. The desired max-
imum may not be the global maximum of the search space
and only part of the search space leads to the desired max-
imum. This has two consequences for optimization of the
registration function. First of all, an optimization started
outside the capture range of the desired maximum has lit-
tle chance of leading to a correct registration of the images.
Secondly, probabilistic optimization routines, such as some
multistart methods and genetic algorithms, may prove to
be less suitable for optimization of the mutual information
measure, because they can move outside the capture range.
The extent of the capture range depends on the registration
measure and on image properties (e.g. modality, contents,
field of view) and cannot be determined a priori.

We will only mention some characteristics of the opti-
mization methods. Detailed descriptions can be found in
general works on optimization techniques, such as [138,
139], and in the papers cited or references therein.

A popular method is Powell’s routine, which optimizes
each transformation parameter in turn. It does not require
function derivatives to be calculated, but is relatively sen-
sitive to local optima in the registration function [11,21,
34,51,52,57,59,65,66,70,88,96,101, 108,140, 141].

Equally popular is the Simplex method, which does
not require derivatives either, but, contrary to the previ-
ous method, considers all degrees of freedom simultane-
ously [22, 32, 33, 38-40, 64, 68, 85,89,101,105,111,116,118,
135,141]. Tt is not known for its speed of convergence.

Plattard et al. [47] use a combination of the Powell and
Simplex methods, whereas Kagadis et al. [28] combine Pow-
ell and a genetic algorithm. Jenkinson and Smith [107] pro-
pose an optimization routine that extends Powell’s method
with initialization and a multi-start technique.

Rodriguez and Loew [53] combine Powell with topo-
graphical global optimization. This involves a graph struc-
ture with the nodes denoting points in the search space
and the arcs pointing in the direction of nodes with lower
function values. In this manner, the influence zones of lo-
cal maxima can be determined and a number of local max-
ima is selected based upon the graph to start optimizations
from.?

Although being one of the simplest optimization tech-
niques, hill-climbing optimization was shown to produce
good results in a multiresolution scheme, with the step size
of the hill-climbing method decreasing as the image reso-
lution increased [30, 43, 44].

Methods that do require function derivatives (whether
mathematically derived or numerically estimated) are gra-
dient ascent [36,37,45,72-74,99,100,121,127,140-142],
quasi-Newton methods [122,141] and the method by
Levenberg-Marquardt [97,141]. Exact expressions for the
gradient of mutual information are derived in [141].

A method little used in image registration is simulated
annealing, which has the seemingly paradoxical property
of sometimes taking a step in the “wrong” direction (i.e.
towards a smaller function value when the goal is maxi-
mization) [91,94,106]. This move is allowed occasionally
to make escapes from local maxima possible. Equally un-
common are genetic algorithms [50, 60], which are based on
the survival-of-the-fittest principle of combining current el-
ements and selecting the best of the new elements.

An unconventional approach of finding the optimal
transformation is employed in [41]. Template matching of
subimages is used to define a set of corresponding points
(the centre points of the subimages), based upon which a
rigid transformation is determined.

To improve the chances of finding the global optimum
of the registration function, Chen and Varshney [134] com-
pute the mutual information both of the entire images and
of four subimages, assuming that when the global mutual
information is maximum, this should also hold for subim-
ages. Zagrodsky et al. [38] use the mutual information
value of three intensity histograms of different bin widths
simultaneously to find the optimal transformation.

3 We have adapted the description of the method to apply to func-

tion mazximaization.
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Optimization is often performed in a multiresolution
manner, as this is expected to decrease the sensitivity of
the method to local maxima in the registration function.
The term multiresolution can be used with respect to the
images, in the sense that the images are down- or up-
scaled to a number of resolution levels [21,29-32,35, 36,44,
46,48,51,71,82,97,100, 101, 120,127,140, 141]. Multireso-
lution can also apply to the deformation grid of curved
registration methods [29, 30, 36, 37,46, 60, 64, 65, 72, 74-76,
82,94,121,122,125].

Holmes et al. [140] compare two optimization methods
together with several other aspects, such as subsampling
and thresholding to extract objects. The most extensive
comparison of optimization methods for mutual informa-
tion based image registration, including multiresolution im-
plementations, can be found in [141].

D.4 Acceleration

Apart from improving the behaviour of a method with re-
spect to local maxima in the registration function, multires-
olution schemes can also improve the speed of an algorithm.
A rough estimate of registration is found in relatively little
time using downsampled images, which is subsequently re-
fined using images of increasing resolution. Registration
at finer scales should be faster as a result of a reason-
able initial estimate. In [70] simple equidistant subsam-
pling, both with and without Gaussian blurring of the im-
ages, is compared for registration of MR, CT and PET
images. Similarly, Zhu and Cochoff [101] compare sub-
sampling both with and without averaging of grey values.
Maes et al. [141] study the behaviour of a large number of
optimization methods in combination with multiresolution
approaches. Rohlfing and Maurer [73] decrease the com-
putational demand by selectively refining the deformation
grid, based on a local entropy measure. Rohde et al. [121]
base the selective refinement on the gradient of the regis-
tration function, assuming that a large gradient is likely to
denote a mismatched area. Similarly, Schnabel et al. [75]
label selected control points as passive, based either on
a segmentation of the image or local statistical measures.
Mattes et al. [122] combine a hierarchical refinement of the
deformation grid with a hierarchical degree of Gaussian
blurring of the images before registration.

Several authors replace costly calculations by look-up ta-
bles. Sarrut and Miguet [143] use look-up tables to avoid
several computations for each voxel, such as the calculation
of the weights of interpolation. Meihe et al. [144] speed up
the Parzen windowing process using look-up tables for the
Gaussian functions. Zollei et al. [45] employ sparse his-
togramming, i.e. using a small number of samples.

E. Image dimensionality

The majority of papers treats registration of three-
dimensional images. We will next discuss the exceptions:
two 2D images or a 2D and a 3D image.

E.1 2D/2D

The difficulty with two-dimensional images is that the
number of samples usually is substantially smaller than
with three-dimensional images. This can result in a less
reliable estimation of the probability distributions. Good
results have been reported nonetheless. The choice for two-
dimensional images is often guided by the application [34,
47,65,66,87,95,103,106,108,112,119,145]. Other times
two-dimensional images are chosen for initial testing of a
novel idea, frequently with the intention of extension to
three dimensions [52,60,111, 131].

E.2 2D/3D

Registration of two- and three-dimensional images is reg-
ularly applied to find the correspondence between the oper-
ative scene and a preoperative image. Viola and Wells [13,
99], for example, devised a method of using mutual in-
formation to register 2D video images to a model of a 3D
object (usually based on an MR or a CT image). Other pa-
pers in this area include [86, 142]. Bansal et al. [83] register
2D portal images to a preoperative CT in order to verify
the position of the patient with respect to the radiother-
apy treatment plan. They propose an iterative approach,
which switches between segmenting the images based on
the current registration and registering the images based
on the current segmentation. Other papers on registration
of 2D portal images and CT are [47,96]. Zollei et al. [45]
and Kim et al. [89] register CT and 2D fluoroscopy images
to verify patient position.

Kim et al. [135] correct for motion in fMRI acquisitions
by registering fMRI slices into a 3D anatomical MR scan.
In [117], out-of-plane deformation of the slices is intro-
duced. Calibration of an ultrasound probe using 2D/3D
registration is described by Blackall et al. [58], registering
2D B-mode ultrasound images to an MR volume to allow
reconstruction of a 3D ultrasound image.

A comparison of six intensity-based registration mea-
sures, for registration of a 2D fluoroscopy image to a CT
volume, has been made by Penney et al. [31].

F. Number of images

Commonly, two images are involved in the registration
process. However, in certain situations several images of
a scene are to be registered or a series of images taken at
different times needs to be compared.

When more than two images are employed, two types
of registration problems can be distinguished: with known
and with unknown inter-image geometry. In the first case,
the transformations between several images are known and
only a single transformation has to be determined. In the
second case, no knowledge about the transformation be-
tween individual images is available and multiple trans-
formations are to be found to transform the images to a
common coordinate system.
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F.1 More than 2 images, with known inter-image geometry

An example of the first type is the problem of determin-
ing the position of a 3D object amidst a number of 2D
images of the object, taking from different, known, angles.
Several different mutual information based solutions have
been proposed for this problem. One could simply sum the
measures of each 2D image and the 3D image [45, 83, 86, 89]
or combine the intensity correspondences for each 2D image
and the 3D image in a single joint histogram [96]. Clark-
son et al. [142] have compared three methods of combining
measures (adding the measures of individual 2D images and
the 3D image, alternating between separate optimizations
or creating a single two-dimensional histogram of intensity
correspondences in each of the 2D images and the 3D im-
age). This was applied to registration of 2D video images
and a CT volume.

A similar problem, that of registering an MR volume
to a set of 2D ultrasound images, is tackled by Black-
all et al. [58] by gathering the corresponding intensity pairs
for each slice and the volume into a single joint histogram.
Pagoulatos et al. [68], on the other hand, optimize the sum
of the mutual information of each ultrasound slice and the
MR volume.

Another example of a multidimensional registration
problem that requires only a single transformation is given
by Andersson and Thurfjell [146], who register two ‘series’
of images (one series consisting of two differently weighted
MR images and the other of a PET transmission and an
emission scan), using a higher-dimensional joint intensity
histogram. Boes and Meyer [111] also propose to use
higher-dimensional mutual information to register two im-
ages, using a third image for additional information (which
is assumed to be in register with one of the other two im-
ages). Studholme et al. [79] use higher-dimensional mutual
information to include a segmentation of an image in the
registration to another image.

An interesting question is how to define higher-
dimensional mutual information. In textbooks and theo-
retical essays on generalized (i.e. higher-dimensional) mu-
tual information [17,147,148], the definition of the mea-
sure for three images corresponds to the leftmost picture
of figure 5. In this Venn diagram notation, the shaded area
denotes the mutual information between images A, B and
C. A property of this definition is that it is not neces-
sarily nonnegative [17]. In the medical image registration
literature a different definition has been proposed [79,111]:

I(A,B,C) =} pla,be) k’g%

a,b,c
which can also be written as
I(A,B,C) = HA)+ H(B)+ H(C)— H(A,B,(C).

This corresponds to the shaded area in the middle picture
of figure 5 (the darker area is counted twice). This defi-
nition is nonnegative, contrary to the previous definition.
However, it does not define the mutual information of three
images as one would expect, namely as the information that

is shared between all three images. The definition depicted
in the rightmost picture of figure 5 is a slightly different
application. Studholme et al. [79] and Lynch et al. [48]
use the mutual information of the union of two images (a
bivalued image) together with a third image.

F.2 More than 2 images, with unknown inter-image geom-

etry

One instance of a registration problem from the second
class (requiring more than one transformation) is described
by Lynch et al. [48], who register three images. They cir-
cumvent the problem of having to optimize several trans-
formations simultaneously by first registering two images.
The third image is registered to the previous two using
a two-dimensional intensity distribution for the registered
images, which results in a higher-dimensional mutual in-
formation measure.

Kriicker et al. [113] register several 3D ultrasound scans,
acquired under different angles, to form a compounded 3D
image with a better signal-to-noise ratio. The first scan is
used as the reference scan to register all subsequent scans
to.

Images of a patient that have been taken over a period of
time need registration to study changes through time. Usu-
ally, the first recorded image acts as a reference to which
all subsequent images are registered [24,26,108,119], al-
though sometimes another image is more suitable as a ref-
erence [72]. Kim et al. [135] correct for patient motion
during the acquisition of fMRI time series by registering
each slice into an anatomical volume.

G. Modalities

Mutual information has been applied to a wide variety
of image modalities. These can be subdivided into appli-
cations of monomodality images, of multimodality images,
of an image and a model and of an image to physical space
(e.g. using intraoperative images of a patient).

G.1 Monomodality

Even though, when first introduced, one of the main ad-
vantages of mutual information was its capability to regis-
ter multimodality images, the measure has also been shown
to be well suited to registration of images of the same
modality. The following is a brief overview of modalities
found in the literature. Although MR images can have very
different characteristics for different scanning protocols, we
have classified all MR registration problems as monomodal-

ity.

MR

Registration of MR images has been described in many
publications [21,51,52,149], often for curved transforma-
tions [26,27,29,36,37,46,62,64,72,74,77,80,94,111,114,
117,120,121,123,124]. A study by Holmes et al. [140] in-

cludes matching of MR-T1 and MRA images. Netsch et al. [93]

register time series of perfusion MR. Some first results of
registering interventional MR images can be found in [23,
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Fig. 5. Different definitions of the mutual information (shaded areas) of three images A, B and C. The dark grey colour in the middle figure

signifies that the area is counted twice. The circles denote the entropy of an image; joint entropy is the union of circles.

67,150]. Time series of fMRI images require registration
to detect changes in brain function [93]. Changes in brain
anatomy are studied in [24,42]. Furthermore, registra-
tion is needed to map the functional information onto an
anatomical MR scan [30,71,76,125]. Kim et al. [135] reg-
ister individual fMRI acquisitions to an anatomical image
to correct for patient motion. Freire and Mangin [104] reg-
ister fMRI images to correct for patient motion and they
study the sensitivity of several registration measures to ac-
tivated areas. Registration to correct for eddy current dis-
tortions in diffusion-weighted images is described in [108,
118]. Hill et al. [151] employ a curved registration method
for intraoperative brain shift measurement. A rigid regis-
tration method is used to estimate brain motion with re-
spect to the cranium as a result of patient position [63].
Studholme et al. [37] estimate tissue deformation of the
brain after electrode implantation. Liu et al. [152] com-
pare their proposed measure for extracting the midsagittal
plane to mutual information.

CT

In the mutual information literature, CT is usually com-
bined with other modalities and few monomodality cases
have been reported. Extraction of the midsagittal plane is
described by Liu et al. [152]. Martens et al. [153] use regis-
tration of pre- and postoperative CT images to validate
pedicle screw placement, whereas Bergmans et al. [154]
validate root canal treatment. An unusual application is
described by Krol et al. [91] who use registration to find
suitable locations for bone grafting.

SPECT

Holmes et al. [140] compare mutual information with a
measure similar to Woods’ measure [5]. Radau et al. [32]
compare normalized mutual information with two other
measures for the registration of SPECT images to an atlas,
created by averaging of a number of SPECT images. The
performance of several measures for registration of ictal and
interictal images is reported in [85]. Registration of trans-
mission images to achieve alignment of the corresponding
emission images is described by Van Laere et al. [105].

PET

In Holmes’ comparison of mutual information and Woods’
measure, PET-PET registration is one of the modality
combinations described [140].

UsS

Meyer et al. [39] use mutual information to match breast
ultrasound images, whereas Zagrodsky et al. [38,40] reg-
ister two series of cardiac images. Shekhar and Zagrod-
sky [33] study the effect of median filtering, number of his-
togram bins and interpolation method on the smoothness
of the registration function of cardiac ultrasound images.
Kriicker et al. [113] form a 3D ultrasound image with better
signal-to-noise ratio by registering several 3D scans, which
were acquired under different angles.

Microscopy
Registration of histological sections has been reported
both using rigid transformations [102,103,145] and curved
ones [65, 66].

X-ray

Sanjay-Gopal et al. [95] compare mutual information and
the correlation coefficient for registration of intrasubject
mammograms. Plattard et al. [47] register both 2D portal
images and portal to x-ray images to verify the position
of the patient with respect to previous radiotherapy treat-
ment sessions.

Various

Ritter et al. [106] apply mutual information to the reg-
istration of retinal images, acquired by a fundus camera.
Another paper on retinal images is the one by Butz and
Thiran [50], who maximize the mutual information of the
gradient images. Baker et al. [119] register series of elec-
trophoresis images (images of protein, separated based on
their isoelectric charge) in order to simplify segmentation.
Sjogreen et al. [34] register emission and transmission scin-
tillation images of an entire body.

G.2 Multimodality

Mutual information has been studied for many combina-
tions of modalities.

MR-CT

A popular combination, and one of the earliest described,
is registration of MR and CT images [11,41,43,44,49,50,
53,57,69,92,97,100,103,126, 130, 140].

An interesting category are the papers that report on regis-
tering what are commonly known as the “RREP” or “Van-
derbilt” images [41,44,57,69-71,97,103,136,141]. These
images are publicly available and an accurate gold stan-
dard is known [155] (although it has been suggested that
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registration by mutual information may in some cases yield
more accurate results than the gold standard [92]). This is
one of the few sets of images that allows direct comparison
of the accuracy of different methods.

MR-PET

A variety of applications of MR-PET registration has
been recounted [11,29,41,43,44,57,69,79,92,97,100, 116,
140,146]. The RREP images mentioned above also include
MR and PET image pairs.

MR-SPECT

Comparisons between mutual information and other mea-
sures for registration of MR and SPECT images are made
in [84,94,140]. Other publications on the subject of MR-~
SPECT matching are [48,98,101, 103].

MR-US

Registration of ultrasound images to other modalities us-
ing mutual information is a relatively unexplored field.
Roche et al. [156] study the possibilities of using mutual
information to register ultrasound to anatomical MR im-
ages, while Slomka et al. [22] match ultrasound with MRA
images. Blackall et al. [58] use registration of ultrasound
and MR images to calibrate the ultrasound probe. Because
ultrasound images can be acquired relatively easily during
a procedure, Pagoulatos et al. [68] report initial results of
registering anatomical MR and ultrasound images with the
intent of using the method for image-to-physical-space reg-
istration.

CT-PET

Both Erdi et al. [25] and Mattes et al. [122] register CT and
PET transmission images of the thorax to achieve fusion
of CT and PET emission images. CT-PET registration of
the thorax is furthermore described by Meyer et al. [116].

CT-SPECT

Meyer et al. [116] also registered CT and SPECT images,
now focusing on the abdomen, as did Koral et al. [90].
Kagadis et al. [28] compare a surface-based and a mutual
information based registration routine.

CT-various

CT has been registered using mutual information to several
other modalities, such as 2D video images [86,142], 2D
fluoroscopy images [31,45,89] and portal images [47,83,
96].

Microscopy

Flynn et al. [87] match stained histological sections with
the corresponding radioluminographs (RLG) of the sec-
tions. Kim et al. [112] warp a histological section to a
video image taken before slicing.

G.3 Modality to model

By a model we denote any kind of simplified or pro-
cessed image. A model can be a simulated image [42,61,
107,115] or a segmentation [120,157]. Another possibil-
ity is an average image or a statistical model composed of
several images [29, 32, 105].

G.4 Modality to physical space

A previously acquired image of a person can be registered
to the actual person, via an intraoperative image. This is
what we term ‘registration to physical space’. A common
application in radiotherapy is the verification of patient
position with respect to a treatment plan based on a pre-
viously acquired image. Usually, this involves registration
of a pretreatment CT to portal [47,83,96] or fluoroscopy
images [45,89].

Registration to physical space is also required in image-
guided treatment, for transferring the information of a pre-
treatment image (and any treatment plans based upon the
image) to a patient on the operating table. Preoperative
images are registered to intraoperatively acquired images,
such as video images from the operation microscope [86,
142], ultrasound images [68], fluoroscopy images [31], PET
transmission images [25] or interventional MR images [23,
67, 150].

A final application is tracking of a person’s movements.
Viola and Wells [13,99] achieve this through registration of
a 3D model to video images.

H. Subject

The subject in the images to be registered can be the
same (intrasubject registration), can differ (intersubject
registration) or one of the images can be a model. Intersub-
ject registration based on mutual information is a highly
relevant topic, because it can form the basis for methods
such as tissue segmentation (e.g. [42,158]), bias field cor-
rection in MR images (e.g. [159]) and analysis of images of
groups of subjects (e.g. [160,161]). Only a small percent-
age of the references deal with intersubject registration,
which is partly because intersubject registration using mu-
tual information has only recently gained more attention
and partly because we have not included all papers that
use registration as one of several steps in an application,
but that focus on the application.

Some of the intersubject registration methods include a
model and those have been treated in section IV-G.3. Hel-
lier et al. [162] compare five measures for intersubject regis-
tration of MR brain images. Studholme et al. [36,160] use
a single image as a reference for intersubject registration in
cohort studies of patients. Rohde et al. [121] register MR
images of different patients using a curved transformation.
Rangarajan et al. [145] register sets of sulcal points sets of
different individuals. Finally, Rueckert et al. [123] register
images of different patients in order to create a statistical
deformable model of brain anatomy.

1. Object

The object in medical image registration is the part of
the anatomy involved. We have found a varied list of ob-
jects, which is summarized in this section.

Brain
A large part of the literature of mutual infor-
mation based registration concerns head or brain

images [11,12,14,24,26-30,32, 35-37,41-44, 47,49-53, 57,
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64,67,69-71,76, 80, 84, 86, 88,92-94,97-101, 104, 107,108, 11 Iyegistration of MR and CT images. By far the most exten-

115-117,123,125,126, 135,136, 140-142, 150, 160, 162].

Thorax/lungs

Moving downwards we come to the thorax and the lungs,
which have been the central theme in a small selection of
papers [25,89,116].

Spine

Penney et al. [31] use images of a realistic spine phantom
and add structures (soft tissue, stents) from clinical images
to assess the performance of several intensity based regis-
tration measures. Martens et al. [153] apply registration to
pre- and postoperative CT images to validate pedicle screw
placement.

Heart

Zagrodsky et al. [38,40] register two series of cardiac ul-
trasound images, with each series of images a sequence of
heart cycles. In [33], several adaptations to the method are
made to allow affine registration.

Breast

Registration of breast images has been described for various
imaging modalities, in particular, MR [46,62,74,77,114,
149], x-ray [95] and ultrasound [39,113].

Abdomen/liver
Several papers have been published on registration of ab-
dominal images [52, 90, 116] and of the liver [23,72].

Pelvis

As registration of pelvic images is quite a challenging
task, almost all references given propose some adaptations
(whether large or small) to the standard method of mutual
information based matching [21, 79, 83].

Tissue
Histological sections of tissue are the object of registration
in a number of studies [65,66, 87,102,112, 145].

Various

Retinal images are registered by Ritter et al. [106] and by
Butz and Thiran [50]. Lynch et al. [48] align two MR im-
ages and a SPECT image of the knee. MRA and Power
Doppler ultrasound images of carotid bifurcations are reg-
istered by Slomka et al. [22] and the resulting transfor-
mation is used to register B-mode ultrasound and MRA.
Sjogreen et al. [34] register whole-body scintillation images.
Dental CT images are registered by Bergmans et al. [154].

J. Comparison studies

By the term ‘comparison study’ we mean all papers writ-
ten with the sole intention of comparing several different
registration measures and not papers that primarily intend
to present a new method (which often includes a compar-
ison to other methods). Admittedly, the dividing line is
thin. Naturally, all studies include mutual information.

Studholme et al. apply three measures to rigid registra-
tion of MR and CT brain images [49] and five to MR and
PET images [35]. A number of measures based on a joint
intensity histogram is compared by Bro-Nielsen [163], for

sive and the most important comparison study was per-
formed by West et al. [155]. It originally comprised 16
methods, but has been extended substantially since. It
has the advantage that the registrations were done by the
research groups themselves. The accuracy of the meth-
ods for rigid registration of clinical CT-MR and PET-MR
images pairs was established relative to a method based
on bone-implanted markers. In [164], the performance of a
number of the methods in the study is compared, after sub-
division into surface-based and intensity-based methods.
Penney et al. [31] study 2D/3D registration of fluoroscopy
and CT images using six measures. A phantom is used,
but the robustness of the measures with respect to differ-
ences in image content is studied by extending the phan-
tom images with soft tissue structures and interventional
instruments from clinical images. Brinkmann et al. [85]
study three measures for registration of ictal and interic-
tal SPECT, using phantom, simulated and clinical images.
One manual and four automated methods are compared by
Flynn et al. [87]. They apply the methods to registration
of radioluminographs and histological sections, focusing on
accuracy (versus markers). Nikou et al. [94] adapt two
existing measures by including robust estimators and com-
pare all four measures to mutual information. Monomodal-
ity registration of MR images and multimodality registra-
tion of MR and SPECT images is studied with regard to
accuracy (versus a manual solution), robustness with re-
spect to starting estimate and the presence of nonbrain
structures. Barnden et al. [84] compare the accuracy of five
methods to register SPECT and MR images against that
of skin fiducials. Mutual information is outperformed by
two methods designed specifically for registration of func-
tional and anatomical images. Holden et al. [27] compare
eight measures for registration of 3D MR time series of
the brain. The property under scrutiny is consistency,
which is measured by registering images in triangles (A
to B, B to C' and C back to A) and calculating the de-
viation of the composite of the three transformations to
the identity transformation. Carrillo et al. [23] apply one
manual and four automated methods to matching of dif-
ferently weighted MR images (including contrast enhanced
images). The accuracy (versus anatomical landmarks) and
the robustness (with respect to, e.g., field of view and start-
ing estimate) were investigated. Van Laere et al. [105] de-
scribe the performance of three measures for registration
of SPECT transmission images. In [81,136], mutual in-
formation is compared to other dependence measures from
information theory, in particular, f-information measures.
Mutual information is a member of this class of measures,
which are all potential registration measures. Freire and
Mangin [104] study the performance of six measures on
registration of fMRI images, focusing on their sensitivity
to activated areas. Nonrobust measures can give rise to er-
roneous activations in the analysis of the images. Otte [30]
compares two measures for curved registration of fMRI to
anatomical MR data. Radau et al. [32] investigate the sen-
sitivity of three registration measures to (simulated) de-
fects in SPECT images. Four measures for registration of
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MR and SPECT images are validated by Grova et al. [88].
The SPECT images are simulations, derived from the MR
images. Hellier et al. [162] evaluate intersubject registra-
tion of MR brain images for five similarity measures. The
transformation considered is curved except for the mutual
information method, which employs a rigid transformation.
Four intensity-based measures are evaluated by Sarrut and
Clippe for registration of 2D portal and a 3D CT image [96].
Two methods for CT-SPECT registration, one based on
surfaces and one on mutual information, are compared by
Kagadis et al. [28]. Zhu [165] shows that mutual informa-
tion is a special case of cross-entropy. Several other cases
are deduced (such as conditional entropy) which are suit-
able registration measures. Combinations of the measures
are compared for rigid registration.

To conclude, we present a list of papers that we
did not consider true comparison studies, but that do
contain comparisons between mutual information and
other measures [12,29,44,46,51-53,64,69,89,91, 93,95,
102,103,107, 127, 128,130, 152, 156].

V. DIsCcussION

Over the past seven years a lot of understanding has
been gained about mutual information as an image regis-
tration measure. It is not an easy measure to understand:
the underlying process of how misregistration influences
the probability distribution is difficult to envisage. How it
influences the relation between joint and marginal distri-
butions is even more mystifying. In contrast, minimizing
the distance between corresponding points, for example, is
a much easier concept to grasp. However, extensive experi-
menting, applying and comparing of the measure has given
a good deal of insight into the strengths and weaknesses of
mutual information.

From the diversity of modalities and objects found in the
literature, it is clear that mutual information lives up to its
reputation of being a generally applicable measure. For nu-
merous clinical applications it can be used without need for
preprocessing, user initialization or parameter tuning. On
the other hand, from the conclusions of certain comparison
studies [31,84, 85] and from the interest in adaptations of
the measure [50-52,69,79,80] it can be inferred that mu-
tual information may not be a universal cure for all registra-
tion problems. For instance, better results with other mea-
sures have been reported for registration of serial images
which show relatively large changes [31,85], for extraction
of the midsagittal plane of the brain in MR images [152]
and for curved registration of MR brain images [130]. Fur-
thermore, it may turn out that mutual information is not
the optimal measure for images of thin structures (e.g. reti-
nal images) or for the combination of MR and ultrasound
images [156].

What we have learnt from past research is that normal-
ization of mutual information with respect to image overlap
is a useful adaptation of the measure. It has been shown
by quite a number of different methods that curved reg-
istration based on mutual information is viable, although
the best way to set about it is yet unclear. We have seen

that the choice of interpolation method influences both ac-
curacy and smoothness of the measure. Several options for
estimation of the probability distributions have been pro-
posed, while large numbers of optimization routines have
been investigated. The question remains, however, how
best to implement a mutual information based method.
That certain options are more promising than others has
been shown, but the optimal choice also depends on the
interaction between the various aspects of the implementa-
tion. For example, a higher-order interpolation method will
most likely yield a smoother registration function, which
reduces the need for a highly complex, yet robust, opti-
mization technique. The best implementation will always
be a balance between time constraints and the demands of
the application. Naturally, comparing the different imple-
mentations proposed is a problem because of the different
applications, the different test sets and sometimes also be-
cause of a lack of detail described. A huge step forward has
been the introduction of the RREP data sets, with which
a large number of registration methods has already been
compared. However, only the accuracy of the participating
methods can be studied, as it is unlikely that anyone will
submit results that are evidently incorrect by visual inspec-
tion. An interesting observation from the RREP study is
that the methods by Maes et al. [57], Studholme et al. [44],
Thévenaz and Unser [97] and Viola and Wells [100], al-
though very differently implemented, all yield comparable
results with respect to accuracy.

The challenges ahead lie, for example, in the field of
curved registration. As far as we know, only two of the
curved registration methods reported explicitly include a
physical model of deformation. For many applications
more than just a regularization term will be required to
achieve physically realistic (let alone correct) deformations.
Another interesting topic is the registration of three images
(or more). This is a problem in subtraction SPECT, for ex-
ample, where two SPECT images may need to be registered
with an anatomical scan. All the papers on registration of
three images either assume two of the images are already
in register or this is achieved by first registering two im-
ages and then the third. How to optimize two different
transformations simultaneously and whether there is a sin-
gle global optimum to this problem is another question.
Challenging also is the field of intraoperative registration,
including patient position verification in radiotherapy and
correction for tissue deformation, which usually requires
fast matching to an image of relatively poor quality and
also entails deformations. Relatively little research has as
yet gone into intersubject registration, as well as certain
combinations of modalities. Ultrasound, to name one of
the most challenging, poses a serious problem for registra-
tion, because of the difference in imaging physics. It is
based on tissue transitions, which results in a strong dom-
inance of edges in the resulting images. A final example of
an area demanding further research is the question how to
‘correct’ the assumption of Shannon entropy that the grey
values of neighbouring voxels are uncorrelated. In other
words, how to include the images’ spatial information.

From the continuing interest in the measure it can be
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deduced that mutual information will not be abandoned
in the near future. It is already a successful registration
measure for many applications and it can undoubtedly be
adapted and extended to aid in many more problems.
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APPENDIX

I. HARTLEY ENTROPY

Hartley wanted a measure that increases linearly with
length. Furthermore, he assumed that given messages of
length ny and ns from s; and sy numbers of symbols, re-
spectively, if s{' = s52, i.e. the number of possible mes-
sages is equal, then the amount of information per message
is also equal.

Ergo,

H =

ni
51

Kn

= s52.
His deduction of the definition of entropy is as follows
King = Kong
{n. = *logs;~ }
K, *tlog st = Ka 2 log sy?

{**logsl* = logsl*/logs, }

log s _ log s5?
! log s1 log s9
{sf" = 5532 — logs|*' = logsy? }

Ki/logs; = Ka/logsa

The final equality holds only when K, = ¢ logs,, with ¢
an arbitrary constant that should be equal for all K,. It
can therefore be omitted and K = log s results.
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