Universal Serial Bus
Micro-USB Cables and Connectors
Specification

Revision 1.01

April 4, 2007
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Issue Date</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>1/30/2006</td>
<td>Revisions to all sections</td>
</tr>
<tr>
<td>0.7</td>
<td>3/24/2006</td>
<td>Added revised Micro-USB drawings to Rev.0.8</td>
</tr>
<tr>
<td>0.8</td>
<td>4/19/2006</td>
<td>Editorial changes and additions by Jan Fahlund (Nokia)</td>
</tr>
<tr>
<td>0.8b</td>
<td>4/26/2006</td>
<td>Corrections to the 0.8 version (based by comments from contributors)</td>
</tr>
<tr>
<td>0.9</td>
<td>6/7/2006</td>
<td>Corrections based on comments from the 0.8b version</td>
</tr>
<tr>
<td>1.0RC</td>
<td>8/2/2006</td>
<td>Added lubricant recommendation, LLRC delta change specified</td>
</tr>
<tr>
<td>1.01RC</td>
<td>11/10/2006</td>
<td>Editorial changes and addition based on Oct-06 USB-IF CCWG meeting.</td>
</tr>
<tr>
<td>1.02RC</td>
<td>12/10/2006</td>
<td>Shell material thickness tolerances changed so that material can be 0.25 mm or 0.3 mm; edited three pictures (Figure 4-10, 4-11 and 4-12).</td>
</tr>
<tr>
<td>1.03RC</td>
<td>12/11/2006</td>
<td>Two pictures edited (Figure 4-8 and 4-9). In fig 4-8 max height to be 2.8mm MAX. In fig 4-9 R0.25mm MAX to be R0.30mm MAX.</td>
</tr>
<tr>
<td>1.0RC3</td>
<td>12/19/2006</td>
<td>For BoD approval</td>
</tr>
<tr>
<td>1.0</td>
<td>1/12/2007</td>
<td>Approved</td>
</tr>
<tr>
<td>1.0</td>
<td>1/22/2007</td>
<td>Cosmetic edits for publication</td>
</tr>
</tbody>
</table>

Copyright © 2007 USB Implementers Forum, Inc. (USB-IF). All rights reserved.

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED OR INTENDED HEREBY.

USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM ALL LIABILITY FOR INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. USB-IF AND THE AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS.

THIS SPECIFICATION IS PROVIDED "AS IS" AND WITH NO WARRANTIES, EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE. ALL WARRANTIES ARE EXPRESSLY DISCLAIMED. NO WARRANTY OF MERCHANTABILITY, NO WARRANTY OF NON-INFRINGEMENT, NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, AND NOWARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

IN NO EVENT WILL USB-IF OR USB-IF MEMBERS BE LIABLE TO ANOTHER FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL, INDIRECT, ORSPECIAL DAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF THIS SPECIFICATION, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

All product names are trademarks, registered trademarks, or service marks of their respective owners.
Contributors

Mark Rodda, (editor) Motorola Kevin Fang, Longwell Electronics
Jan Fahlund, (editor) Nokia Morgan Jair, Main Super Co.
Jim Koser, (CCWG Chairman), Foxconn Tom Kawaguchi, Matsushita Electric Works
Glen Chandler, Advanced-Connectek (Acon) Ron Ward, Matsushita Electric Works
Charles Wang, Advanced-Connectek (Acon) Satoshi Yamamoto, Matsushita Electric Works
Toshinori Sasaki, Across Techno Yasuhiko Shinohara, Mitsumi
Minoru Ohara, Allion Atsushi Nishio, Mitsumi
Brad Brown, ATL Hitoshi Kawamura, Mitsumi
Christopher Mattson, ATL Scott Sommers, Molex
Marcus Darrington, ATL Kevin Delaney, Molex
Jaremy Flake, ATL Technology Kieran Wright, Molex
George Olear, Contech Research Padraig McDaid, Molex
Roy Ting, Elka Mikko Poikselka, Molex
Sophia Liu, ETC Sam Liu, Newnex Technology Corp.
Bill Northey, FCI Richard Petrie, Nokia
Tsuneki Watanabe, Foxconn Kai Silvennoinen, Nokia
Jim Zhao, Foxconn Panu Ylihaavisto, Nokia
David Ko, Foxconn Arthur Zarnowitz, Palm
Jong Tseng, Foxconn Douglas Riemer, SMK
Jack Lu, Foxlink Eric Yagi, SMK
Tim Chang, Foxlink Abid Hussain, Summit Microelectronics
Sathid Inthon, Fujikura Kaz Osada, Tyco
Toshi Mimura, Fujijura Masaru Ueno, Tyco
Alan Berkema, Hewlett-Packard Yoshikazu Hirata, Tyco
Karl Kwiat, Hirose Ed Beeman, USB Implementers Forum
Shinya Tono, Hirose Mark Paxson, USB Implementers Forum
Kazu Ichikawa, Hirose
Ryozo Koyama, Hirose
Yousuke Takeuchi, Hirose
Tsuyoshi Kitagawa, Hosiden
Jim Eilers, Hosiden
Kazuhiro Salto, JAE
Ron Muir, JAE
Mark Saubert, JAE
Yasuhiro Miya, JST
Takahiro Diguchi, JST
Yoichi Nakazawa, JST
Table of Contents

1 **Introduction** .. 6
 1.1 General ... 6
 1.2 Objective of the Specification ... 6
 1.3 Intended Audience/Scope .. 6
 1.4 Related Documents ... 6

2 **Acronyms and Terms** .. 7

3 **Significant Features** .. 8
 3.1 USB 2.0 Specification Compliance .. 8
 3.2 On-The-Go Device .. 8
 3.3 Connectors .. 8
 3.4 Compliant Cable Assemblies .. 8
 3.5 Plug Overmolds .. 9

4 **Cables and Connectors** .. 10
 4.1 Introduction .. 10
 4.2 Micro-Connector Mating .. 10
 4.3 Color Coding .. 11
 4.4 Device, Cable and Adapter Delays ... 11
 4.5 Compliant Usage of Connectors and Cables .. 12
 4.5.1 Cables .. 12
 4.5.2 Overmolds ... 12
 4.5.3 Mechanical Interfaces ... 12
 4.5.4 Surface mount standard version drawings ... 12
 4.5.5 DIP-type and Midmount-type receptacles ... 12
 4.5.6 Connector Keying .. 12
 4.5.7 Right Angle Plugs ... 12
 4.5.8 Adapters ... 13
 4.6 Drawings ... 13

5 **Electrical Compliance Requirements** ... 33
 5.1 Data Rates Beyond USB 2.0 (480Mb/s -->) ... 33
 5.2 Low Level Contact Resistance .. 33
 5.3 Contact Current Rating .. 33
 5.3.1 Signal Contacts Only (2, 3, and 4) .. 33
 5.3.2 With Power Applied Contacts (1 and 5) .. 33

6 **Mechanical Compliance Requirements** ... 34
 6.1 Operating Temperature Range ... 34
 6.1.1 Option I .. 34
 6.1.2 Option II ... 34
 6.2 Insertion Force ... 34
 6.3 Extraction Force ... 34
 6.4 Plating ... 34
 6.4.1 Option I .. 35
 6.4.2 Option II ... 35
 6.5 Solderability .. 35
 6.6 Peel Strength (Reference Only) .. 35
 6.7 Wrenching Strength (Reference Only) .. 35
 6.8 Lead Co-Planarity ... 35
 6.9 RoHS Compliance ... 36
 6.10 Shell & Latch Materials ... 36
Figures

Figure 4-1 Micro-A to Micro-B Cable ... 14
Figure 4-2 Standard-A to Micro-B Cable .. 15
Figure 4-3 Micro-A to Captive Cable ... 16
Figure 4-4 Micro-A Plug Overmold, Straight .. 17
Figure 4-5 Micro-B Plug Overmold, Straight ... 18
Figure 4-6 Micro-A Plug Interface ... 19
Figure 4-7 Micro-B Plug Interface ... 20
Figure 4-8 Micro-A/B Plug Interface (Cut-section) .. 21
Figure 4-9 Micro-AB receptacle interface ... 22
Figure 4-10 Micro-B receptacle interface .. 23
Figure 4-11 Micro-AB Receptacle Design ... 24
Figure 4-12 Micro-B Receptacle Design .. 25
Figure 4-13 Micro-A Plug Blockage ... 26
Figure 4-14 Micro-B Plug Blockage ... 27
Figure 4-15 Micro-A Plug, Side Right Angle .. 28
Figure 4-16 Micro-A Plug, Down Right Angle ... 29
Figure 4-17 Micro-B Plug, Side Right Angle .. 30
Figure 4-18 Micro-B Plug, Down Right Angle ... 31
Figure 4-19 Adapter, Standard-A receptacle to Micro-A plug 32

Tables

Table 4-1. Plugs Accepted By Receptacles ... 10
Table 4-2. Micro-A Plug Pin Assignments ... 10
Table 4-3. Color Coding for Plugs and Receptacles 11
Table 4-4. Maximum Delay for Micro-Connector and Cable 11
Table 4-5. Maximum Delay for Standard Connector Cable 11
1 Introduction

1.1 General

USB has become a popular interface for exchanging data between cell phone and portable devices. Many of these devices have become so small it is impossible to use standard USB components as defined in the USB 2.0 specification. In addition the durability requirements of the Cell Phone and Portable Devices market exceed the specifications of the current interconnects. Since Cell Phones and other small Portable Devices are the largest market potential for USB, this specification is addressing this very large market while meeting all the requirements for electrical performance within the USB 2.0 specification.

1.2 Objective of the Specification

The purpose of this document is to define the requirements and features of a Micro-USB connector that will meet the current and future needs of the Cell Phone and Portable Devices markets, while conforming to the USB 2.0 specification for performance, physical size and shape of the Micro-USB interconnect.

This is not a stand-alone document. Any aspects of USB that are not specifically changed by this specification are governed by the USB 2.0 Specification and USB On-The-Go Supplement.

1.3 Intended Audience/Scope

Cell phone and Portable Devices have become so thin that the current Mini-USB does not fit well within the constraints of future designs. Additional requirements for a more rugged connector that will have durability past 10,000 cycles and still meet the USB 2.0 specification for mechanical and electrical performance was also a consideration. The Mini-USB could not be modified and remain backward compatible to the existing connector as defined in the USB OTG specification.

1.4 Related Documents

USB 2.0

USB OTG Supplement
2 Acronyms and Terms

This chapter lists and defines terms and abbreviations used throughout this specification.

A-Device A device with a Type-A plug inserted into its receptacle. The A-device supplies power to Vbus and is host at the start of a session. If the A-device is On-The-Go, it may relinquish the role of host to an On-The-Go B-device under certain conditions.

Application A generic term referring to any software that is running on a device that can control the behavior or actions of the USB port(s) on a device.

B-Device A device with a Type-B plug inserted into its receptacle. The B-device is a peripheral at the start of a session. If the B-device is OTG, it may be granted the role of host from an OTG A-device.

DIP-type A connector with contact and shield solder tails that are soldered through the printed circuit board.

FS Full Speed (max 12Mb/s)

Higher than HS (480Mb/s ---> 5 Gb/s)

HS High Speed (max 480 Mb/s)

Host A physical entity that is attached to a USB cable and is acting in the role of the USB host as defined in the USB Specification, Revision 2.0. This entity initiates all data transactions and provides periodic Start of Frames.

HNP Host Negotiation Protocol

ID Identification. Denotes the pin on the Micro connectors that is used to differentiate a Micro-A plug from a Micro-B plug.

LS Low Speed (max 1,5 Mb/s)

Midmount-type A connector that is mounted in a cut-out in the printed circuit board between the top and bottom surfaces.

OTG On-The-Go

OTG device A device with the host and peripheral capabilities

Peripheral A physical entity that is attached to a USB cable and is currently operating as a “device” as defined in the USB Specification, Revision 2.0. The Peripheral responds to low level bus requests from the Host.

PCB Printed circuit board

USB Universal Serial Bus

USB-IF USB Implementers Forum
3 Significant Features

This section identifies the significant features of the Micro-USB specification. The purpose of this section is not to present all the technical details associated with each major feature, but rather to highlight its existence. Where appropriate, this section references other parts of the document where further details can be found.

3.1 USB 2.0 Specification Compliance

Any device with Micro-USB features is first and foremost a USB peripheral that is compliant with the USB 2.0 specification.

3.2 On-The-Go Device

Any OTG Micro-USB device shall conform to the OTG requirements as set forth in the On-The-Go Supplement to the USB 2.0 Specification.

3.3 Connectors

The USB 2.0 specification defines the following connectors:

- Standard-A plug and receptacle,
- Standard-B plug and receptacle, and
- Mini-B plug and receptacle.

The Micro-USB specification defines the following additional connectors:

- Micro-B plug and receptacle
- Micro-AB receptacle
- Micro-A plug.

The Micro-AB receptacle is only allowed on OTG products. All other uses of the Micro-AB receptacle are prohibited. The Micro-AB receptacle accepts either a Micro-A plug or a Micro-B plug.

It is recommended that the Micro-AB continue to support HNP as requested and support full functionality as a peripheral when a Micro-B plug is inserted.

3.4 Compliant Cable Assemblies

The USB 2.0 specification defines the following cables:

- Standard-A plug to Standard-B plug,
- Standard-A plug to Mini-B plug, and
- Captive cable with Standard-A plug.

The Micro-USB specification defines the following additional cables:

- Micro-A plug to Micro-B plug,
- Micro-A plug to Standard-A receptacle
- Micro-B plug to Standard-A plug, and
- Hardwired Captive cable with Micro-A plug. (Hardwired Captive cable is a cable, connected internally to a device, which is not designed to be removed by the end user of that device.)

No other types of cables are allowed by either the USB specification, or by the OTG supplement. Cables are not allowed to have receptacles on either end unless they meet the mechanical and electrical requirements of adapters defined in this document.
3.5 Plug Overmolds

The Micro-USB specification constrains the size and the shape of the overmolds for the Micro-A and Micro-B plugs.

The Micro-A plug’s overmold has a rectangular shape, and the Micro-B plug’s overmold is rectangular with chamfers. This allows easy recognition and differentiation of the two plugs by the consumer. See pictures Figure 4-4 and Figure 4-5.
4 Cables and Connectors

4.1 Introduction

This chapter provides the mechanical and electrical specifications for the cables, connectors and cable assemblies used to interconnect devices as well as constraints on the design of the overmolds for the Micro-A and Micro-B plugs.

4.2 Micro-Connector Mating

The following table summarizes the plugs accepted by each of the receptacles.

<table>
<thead>
<tr>
<th>Receptacle</th>
<th>Plugs Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard-A</td>
<td>Standard-A</td>
</tr>
<tr>
<td>Standard-B</td>
<td>Standard-B</td>
</tr>
<tr>
<td>Mini-B</td>
<td>Mini-B</td>
</tr>
<tr>
<td>Micro-B</td>
<td>Micro-B</td>
</tr>
<tr>
<td>Micro-AB</td>
<td>Micro-A or Micro-B</td>
</tr>
</tbody>
</table>

The usage and wiring assignments of the five pins in the Micro-A plug are defined in the following table.

<table>
<thead>
<tr>
<th>Contact Number</th>
<th>Signal Name</th>
<th>Typical Wiring Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>D-</td>
<td>White</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
<td>Green</td>
</tr>
<tr>
<td>4</td>
<td>ID</td>
<td><Ra_PLUG_ID</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Black</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Drain Wire</td>
</tr>
</tbody>
</table>

The ID pin on a Micro-A plug shall be connected to the GND pin. The ID pin on a Micro-B plug is not connected or is connected to ground by a resistance of greater than Rb_PLUG_ID (100 kΩ MIN). An On-The-Go device is required to be able to detect whether a Micro-A or Micro-B plug is inserted by determining if the ID pin resistance to ground is less than Ra_PLUG_ID (10 kΩ MAX) or if the resistance to ground is greater than Rb_PLUG_ID. Any ID resistance less than Ra_PLUG_ID shall be treated as ID = FALSE and any resistance greater than Rb_PLUG_ID shall be treated as ID = TRUE.
4.3 Color Coding

The following colors are mandated for the plastic inside the Micro-USB connectors defined in this specification.

Table 4-3. Color Coding for Plugs and Receptacles

<table>
<thead>
<tr>
<th>Connector</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-A plug</td>
<td>White</td>
</tr>
<tr>
<td>Micro-B receptacle</td>
<td>Black</td>
</tr>
<tr>
<td>Micro-B plug</td>
<td>Black</td>
</tr>
<tr>
<td>Micro-AB receptacle</td>
<td>Gray</td>
</tr>
</tbody>
</table>

4.4 Device, Cable and Adapter Delays

In Figure 7-11 of the USB 2.0 specification, four test planes are defined along the transmission path from the host transceivers to the peripheral transceivers. These test planes (TP) are as follows:

- TP1: pins of host transceiver chip
- TP2: contact points of host Standard-A receptacle
- TP3: contact points of peripheral Standard-B or Micro-B receptacle
- TP4: pins of peripheral transceiver chip

The maximum total delays are as follows:

- On-The-Go device - TP1 to TP2: 1 ns
- Adapter: 1 ns
- Any cable with a Micro-A or Micro-B plug: 10 ns

The maximum delays for the two worst cases of connection are shown in the following tables.

Table 4-4. Maximum Delay for Micro-Connector and Cable

<table>
<thead>
<tr>
<th>Location</th>
<th>Delay Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 2.0 Compliant Host – TP1 to TP2</td>
<td>3 ns</td>
</tr>
<tr>
<td>Standard-A receptacle to Micro-A plug adapter</td>
<td>1 ns</td>
</tr>
<tr>
<td>Micro-A plug to Micro-B plug cable</td>
<td>10 ns</td>
</tr>
<tr>
<td>USB 2.0 Compliant B-device – TP3-TP4</td>
<td>1 ns</td>
</tr>
<tr>
<td>Total</td>
<td>15 ns</td>
</tr>
</tbody>
</table>

Table 4-5. Maximum Delay for Standard Connector Cable

<table>
<thead>
<tr>
<th>Location</th>
<th>Delay Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-The-Go Compliant Device – TP1 to TP2</td>
<td>1 ns</td>
</tr>
<tr>
<td>Micro-A plug to Standard-A receptacle adapter</td>
<td>1 ns</td>
</tr>
<tr>
<td>Standard-A plug to Standard-B plug cable</td>
<td>26 ns</td>
</tr>
<tr>
<td>USB 2.0 Compliant B-device – TP3 to TP4</td>
<td>1 ns</td>
</tr>
<tr>
<td>Total</td>
<td>29 ns</td>
</tr>
</tbody>
</table>
4.5 Compliant Usage of Connectors and Cables

Cable assemblies and connectors not described below or not allowed by other amendments to the USB specification are not compliant with the USB specification and may not be labeled as such.

4.5.1 Cables

The cables allowed by the Micro-USB specification are shown in Figure 4-1, Figure 4-2, and Figure 4-3. Cables must have a propagation delay of 10 ns or less, have a physical length of no more than 2.0 meters, and meet all other requirements of a USB cable.

4.5.2 Overmolds

The size and shape of the Micro-A and Micro-B plug overmolds must conform to the constraints shown in Figure 4-4 and Figure 4-5.

4.5.3 Mechanical Interfaces

The mechanical interface dimensions for the Micro-A and Micro-B plugs are shown in Figure 4-6 and Figure 4-7. Mechanical interface dimensions for Micro-AB and Micro-B receptacles are shown in Figure 4-9 and Figure 4-10.

4.5.4 Surface mount standard version drawings

By following these instructions, receptacles from different manufacturers can be used interchangeably on the same printed circuit board (PCB). In the case of the “surface mount standard version”, the dimensions of the contact tail and shield tail must comply with figures 4-11 and 4-12.

Note: PCB-layout drawings are included for reference only.

Figure 4-11 and Figure4-12 shows designs for the Micro-AB and Micro-B receptacles respectively.

4.5.5 DIP-type and Midmount-type receptacles

DIP-type (contact and shield tails soldered through PCB) and Midmount-type (connector that is mounted in a cut-out in the printed circuit board between the top and bottom surfaces.) receptacle connectors are not defined in this standards document. These mounting styles are allowed under the standard as long as all intermating conditions are met. Mechanical dimensions and mechanical durability values may vary from the Surface mount standard connector but must comply with all minimum values.

4.5.6 Connector Keying

This Micro connector series has been designed so as to prevent the Micro-A and Micro-B plugs from being incorrectly inserted into a receptacle. The amount of metal blocking various possible incorrect insertions is shown in Figure 4-13 and Figure 4-14, and is always greater than 0.35 mm.

4.5.7 Right Angle Plugs

The overmolds for right / down angle plugs are required to comply with the same shape constraints that apply to straight plugs. Reference drawings for right / down angle plugs are shown in Figure 4-15, Figure 4-16, Figure 4-17 and Figure 4-18.
4.5.8 Adapters

Requirements:

- The propagation delay of the adapter shall be less than 1 ns.
- The physical length shall not exceed 150 mm.
- The resistance of the adapter through Vbus and GND, including contacts, shall not exceed 70 mΩ.

4.5.8.1 Standard-A receptacle to Micro-A plug

This adapter is used to connect a cable with a Standard-A plug to an On-The-Go device that has a Micro-AB receptacle. A reference drawing for this adapter is shown in Figure 4-19.

4.6 Drawings

This section contains the mechanical drawings that are referenced in the previous section.
Figure 4-1 Micro-A to Micro-B Cable

Max cable length = shorter of 2.0m or 10ns/c electrical length

Detail C-C
(Typical USB Shielded Cable)

- Aluminum Metallized Polyester Inner Shield
- 26 AWG STC Drain Wire
- Red (Bus)
- Black (Ground)
- Green (DM)
- White (DV)
- Copper Braided Shield
- Polyvinyl Chloride Jacket

Dimensions are TYPICAL and are for general reference purposes only.

Optional Molded Strain Relief

Micro-A Plug to Micro-B Plug
USB Cable Assembly
Figure 4-2 Standard-A to Micro-B Cable
Figure 4-3 Micro-A to Captive Cable

Max cable length = shorter of 2.0m or 100 times electrical length.

Detail A-B
(Typical USB Shielded Cable)

Prepared Termination

Aluminum Metallized Polyester Inner Shield

(26 AWG STR Stranded Wire)

Red (Power)

Black (Ground)

Green (ID)

White (ID)

User Specified

70% Tinned Copper Braided Shield

Polyvinyl Chloride Jacket

Optional Molded Strain Relief

Dimensions are TYPICAL and are for general reference purposes only.
1. Any surface can have texturing up to 0.3mm above the surface.
2. A square area around the letter “A” can be raised as much as 0.5mm above the surface.
3. USB authorized logo mark, connector type letter designation (A or B),
 color of the insulator, body and maximum dimensions are mandatory.
 Overmolding outer configuration, color and final shape are reference.

Figure 4-4 Micro-A Plug Overmold, Straight
NOTES:

1. Any surface can have texturing up to 0.3 mm below the surface.
2. A square area around the letter "B" can be lowered by as much as 0.5 mm.
3. USB authorized logo mark, connector type letter designation (A or B), color of the insulator, body and maximum dimensions are mandatory.
 Overmolding outer configuration, color and final shape are reference.
Figure 4-6 Micro-A Plug Interface

NOTE:
1. Pin4 is connected to pin 5 inside the plug.
2. Dimensions that are labeled REF may vary from manufacturer to manufacturer.
3. General tolerance is ±0.25mm; otherwise the specified tolerances apply.
Figure 4-7 Micro-B Plug Interface

NOTE:

1. Pin 4 is not connected to pin 5 inside the plug.
2. Dimensions that are labeled H7F may vary from manufacturer to manufacturer.
3. General tolerance is ±0.05 mm; otherwise the specified tolerances apply.
Figure 4-8 Micro-A/B Plug Interface (Cut-section)
Figure 4-9 Micro-AB receptacle interface
Figure 4-10 Micro-B receptacle interface
Figure 4-11 Micro-AB Receptacle Design
Figure 4-12 Micro-B Receptacle Design
Figure 4-13 Micro-A Plug Blockage
Figure 4-14 Micro-B Plug Blockage
The shape and size constraints for the side right angle Micro-A plug overmold are the same as those for straight Micro-A plug overmold.

Figure 4-15 Micro-A Plug, Side Right Angle
The shape and size constraints for the side right angle Micro-A plug overmold are the same as those for straight Micro-A plug overmold.

Figure 4-16 Micro-A Plug, Down Right Angle
The shape and size constraints for the side right angle Micro-B plug overmold are the same as those for straight Micro-B plug overmold.

Figure 4-17 Micro-B Plug, Side Right Angle
The shape and size constraints for the side right angle Micro-B plug overmold are the same as those for straight Micro-B plug overmold.
Figure 4-19 Adapter, Standard-A receptacle to Micro-A plug
5 Electrical Compliance Requirements

Electrical requirements are unchanged from the USB 2.0 specification (Chapter 6; Table 6-7) and the On-The-Go Supplement to the USB 2.0 Specification, unless otherwise specified here.

5.1 Data Rates Beyond USB 2.0 (480Mb/s -->)

This section will be amended as requirements for higher data rates (beyond the current USB 2.0 specification) become available.

5.2 Low Level Contact Resistance

$30\,\Omega$ (Max) initial when measured at 20mV (Max) open circuit at 100mA. Maximum change (delta) of $+10\,\Omega$ after 10,000 insertion/extraction cycles at a maximum rate of 500 cycles per hour. (When manually operated, mating speed should be below 200 cycles per hour.)

5.3 Contact Current Rating

5.3.1 Signal Contacts Only (2, 3, and 4)

1A minimum when measured at an ambient temperature of 25 degrees Celsius. With power applied to the contacts, the delta temperature must not exceed $+30$ degrees Celsius at any point in the USB connector under test.

5.3.2 With Power Applied Contacts (1 and 5)

1.8A for contacts 1 and 5 and at the same time 0.5A for contacts 2, 3 & 4, minimum when measured at an ambient temperature of 25 degrees Celsius. With power applied to the contacts, the delta temperature must not exceed $+30$ degrees Celsius at any point in the USB connector under test.
6 Mechanical Compliance Requirements

The following requirements will take precedence over the requirements set forth in the USB 2.0 specification (Chapter 6; Table 6-8) and the On-The-Go Supplement to the USB 2.0 Specification.

6.1 Operating Temperature Range

6.1.1 Option I
-30°C to +80°C

6.1.2 Option II
-30°C to +85°C (and above)

6.2 Insertion Force
Recommendations:
- It is recommend to use a non-silicon based lubricant on the latching mechanism to reduce wear. If used the lubricant may not affect any other characteristic of the system.
- 35 Newton’s maximum at a maximum rate of 12.5 mm (0.492") per minute.

6.3 Extraction Force
- 8N (MIN) after 10000 insertion/extraction cycles (at a maximum rate of 12.5mm (0.492") per minute).
- No burs or sharp edges are allowed on top of locking latches (hook surfaces which will rub against receptacle shield).
- It is recommend to use a non-silicon based lubricant on the latching mechanism to reduce wear. If used the lubricant may not affect any other characteristic of the system.

6.4 Plating
Recommendations:
- Contact plating should be done after stamping and forming
- Burrs should not be present on contact areas
- Contact area as smooth as possible before plating
- Use a sealing treatment to control plating porosity (contact area)
6.4.1 Option I

6.4.1.1 Receptacle

Contact area: (Min) 0.05 µm Au + (Min) 0.75 µm Ni-Pd on top of (Min) 2.0 µm Ni

Contact tail: (Min) 0.05 µm Au on top of (Min) 2.0 µm Ni

6.4.1.2 Plug

Contact area: (Min) 0.05 µm Au + (Min) 0.75 µm Ni-Pd on top of (Min) 2.0 µm Ni

6.4.2 Option II

6.4.2.1 Receptacle

Contact area: (Min) 0.75 µm Au on top of (Min) 2.0 µm Ni

Contact tail: (Min) 0.05 µm Au on top of (Min) 2.0 µm Ni

6.4.2.2 Plug

Contact area: (Min) 0.75 µm Au on top of (Min) 2.0 µm Ni

6.5 Solderability

Solder shall cover a minimum of 95% of the surface being immersed, when soldered at temperature 255°C +/-5°C for immersion duration 5S (component is to be lead-free component) using Type R flux.

6.6 Peel Strength (Reference Only)

Minimum 150N when soldered connector is pulled up from PCB in the vertical direction.

6.7 Wrenching Strength (Reference Only)

Perpendicular Force Test: This test shall be performed using virgin parts. Perpendicular forces (Fp) are applied to a plug when inserted at a distance (L) of 15mm from the edge of the receptacle. Testing conditions & method should be agreed with all parties. These forces are to four direction (left, right, up, down). Compliant connectors will meet the following force thresholds with the following results:

- No plug or receptacle damage: 0 - 25N
- The plug can be damaged, but in such a way that the receptacle does not sustain damage: 25 - 50N

6.8 Lead Co-Planarity

Co-planarity of all SMT leads shall be within 0.08mm range.
6.9 RoHS Compliance

Component is to be RoHS compliant. Lead Free plug and receptacle materials must conform to Directive 2002/95/EC of January 27, 2003 on Restriction of Hazardous Substances (RoHS).

6.10 Shell & Latch Materials

Shell and latch materials for both plug and receptacle shall be stainless steel or mechanically equivalent material.