Poisson Surface Reconstruction
Michael Kazhdan , Matthew Bolitho and Hugues Hoppe
Eurographics Symposium on Geometry Processing 2006, 61-70.

We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function schemes, our Poisson approach allows a hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse linear system. We describe a spatially adaptive multiscale algorithm whose time and space complexities are proportional to the size of the reconstructed model. Experimenting with publicly available scan data, we demonstrate reconstruction of surfaces with greater detail than previously achievable.

Downloads

The use of this software is covered by the terms and conditions of the Software License Agreement

 Paper
 Talk Slides
 Cover Image

 Source Code
 Windows Executable (i386)
 Windows Executable (amd64)
 Linux Executable (x86)
 Linux Executable (x86_64)