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Abstract. Biochemical reactions taking place in living systems that map different
inputs to specific outputs are intuitively recognized as performing information
processing. Conventional wisdom distinguishes such proteins, whose primary func-
tion is to transfer and process information, from proteins that perform the vast
majority of the construction, maintenance, and actuation tasks of the cell (assem-
bling and disassembling macromolecular structures, producing movement, and
synthesizing and degrading molecules). In this paper, we examine the computing
capabilities of biological processes in the context of the formal model of computing
known as the random access machine (RAM) [Dewdney AK (1993) The New
Turing Omnibus. Computer Science Press, New York], which is equivalent to a
Turing machine [Minsky ML (1967) Computation: Finite and Infinite Machines.
Prentice-Hall, Englewood Cliffs, NJ]. When viewed from the RAM perspective, we
observe that many of these dynamic self-assembly processes — synthesis, degrada-
tion, assembly, movement — do carry out computational operations. We also show
that the same computing model is applicable at other hierarchical levels of bio-
logical systems (e.g., cellular or organism networks as well as molecular networks).
We present stochastic simulations of idealized protein networks designed explicitly
to carry out a numeric calculation. We explore the reliability of such computations
and discuss error-correction strategies (algorithms) employed by living systems.
Finally, we discuss some real examples of dynamic self-assembly processes that
occur in living systems, and describe the RAM computer programs they implement.
Thus, by viewing the processes of living systems from the RAM perspective, a far
greater fraction of these processes can be understood as computing than has been
previously recognized.
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1. Introduction

Biochemical reactions taking place in living systems that map differ-
ent inputs to specific outputs are intuitively recognized as performing
information processing. This information processing occurs at many
levels. At the molecular level, information transfer and processing can
take place by shape recognition and conformation changes. Inputs of
specific molecular species bind selectively to molecules with comple-
mentary shape and chemistry. These can self-assemble into a more
complicated structure, which can then be read out as an output, again
by shape recognition (Conrad and Zauner, 1998; Conrad, 1999).
Other information processing can occur at the level of molecular net-
works. Protein networks can perform several computational func-
tions, as noted by Bray (1995), and references therein. For example,
they can map one input to multiple divergent paths; integrate multiple
inputs to produce a single output; amplify a faint or ephemeral signal
into substantive biochemical changes; adapt to signal intensity to
remain sensitive over many orders of magnitude of impinging signal;
and act as a memory store. In gene regulatory networks, specifically,
the process of gene expression has been demonstrated by Ben-Hur
and Seigelmann (2004) to simulate memory bounded Turing ma-
chines. Thus gene expression can be considered as true computation.
Communication between different levels of information processing
has also been noted. Signals external to an organism are sensed by
specific cells designed to transduce this type of signal. These cells pro-
cess the signal, then can output communication to other cells, which
can result in gene expression in those cells. The outputs (newly syn-
thesized proteins, hormone secretion, etc.) then percolate from the
molecular level back up the cellular level to the organism level to
drive the new state or behavior of the organism (Conrad, 1995).
Other efforts have shown how selected chemical reactions can be
mapped to a digital computing model. Magnasco (1997) demonstrated
theoretically that digital logic can be implemented with standard
chemical kinetics. He explicitly constructed logic gates AND, OR,
XOR, and NAND from a small number of coupled chemical reac-
tions. Arkin and Ross (1994) showed that specific enzyme cycles can
produce AND, OR, XOR and NOT gates. In contrast, Agutter and
Wheatley (1997) argued that such protein networks behave as analog
rather than digital devices. Assuming that the actual computational
units are populations of proteins, rather than individual molecules,
they pointed out that different parts of the population do not receive
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simultaneous identical inputs (because of variations in chemical com-
position of the environment). Therefore the output is a weighted sum
of responses over the population, and will provide an analog rather
than digital output. In any event, regardless of whether the computing
is thought to be digital or analog, or whether the processes occur at
the molecular, cellular, or organism level, the focus of these efforts
has been on processes that are readily recognized as information pro-
cessing, mapping inputs to outputs.

Living systems, however, and protein molecular machines in
particular, perform a large range of other functions besides obvious
input-output “‘circuits.” They perform the vast majority of the con-
struction, maintenance, and actuation tasks of the cell: building mac-
romolecular structures, producing movement, synthesizing specific
chemical species, degrading molecules, and disassembling structures.
Conventional wisdom distinguishes such proteins from those whose
primary function is to transfer and process information. For example,
Bray (1995, p. 310) stated, “To liken such proteins to computational
devices is inappropriate,” except to the extent that they are regulated
by the information processing mechanisms. This sentiment was ech-
oed by Agutter and Wheatley (1997, p. 14), who wrote, “Apart from
the numerous other functions of cell proteins, including synthesis,
degradation, structural assembly, motor activity and secretion,” a
subset of proteins are specifically involved in information transfer and
processing. Conrad (1995, p. 157) also suggested that there are two
distinct types of functional processes in biological systems, those that
“involve information processing in a direct way, as in control, mea-
surement, or problem solving” and those such as energy metabolism,
that only involve information processing in an indirect way as a con-
trol mechanism.

In this paper, we take a different approach to examining the com-
puting capabilities of biological processes. We show that the protein
properties that enable dynamic self-assembly map very naturally to a
different formal model of computing, the program machine (Minsky,
1967), also called the random access machine (RAM) (Dewdney,
1993), which is equivalent to a Turing machine (Minsky, 1967). When
viewed from the RAM perspective, we observe that many of these
other biological processes — synthesis, degradation, assembly, move-
ment —do carry out computational operations. We also show that the
same computing model is applicable at other hierarchy levels of bio-
logical systems (e.g., cellular or organism networks as well as molecu-
lar networks), suggesting that RAM algorithms can scale up to
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greater spatial and temporal scales. Thus, by viewing the processes of
living systems from the RAM perspective, a far greater fraction of
these processes can be understood as computing than has been previ-
ously recognized. We have two motivations for establishing the map-
ping between biological dynamic self-assembly processes and RAM
computing. First, if biological systems are computing via dynamic
self-assembly, then these self-assembly processes must be programma-
ble. We wish to learn the “‘programming language,” and then use it
to program dynamic self-assembly, to build novel structures and
materials. Second, perhaps understanding the algorithms of biological
systems will provide some insight into their ability to develop, persist,
reproduce, and evolve.

First, we describe the RAM model and its components: registers
(number storage), operations on those registers, sequencing the opera-
tions, and branching under different conditions. We then identify the
dynamic (energy-driven) self-assembly processes of proteins that can
implement the required machinery of RAM computers. We discuss a
variety of alternative protein structures/mechanisms (e.g., populations
of molecules vs. polymers; transport vs. polymerization) as different
embodiments of the same RAM model. That is, there are many dif-
ferent types of “hardware” that can carry out the same ‘“‘software.” It
is noteworthy that in living systems, registers are commonly embod-
ied in a unary, rather than binary, representation. Thus, RAM com-
puting in living systems does look very different from the digital,
binary computing that has become virtually ubiquitous in modern
society.

After discussing the different individual components of a RAM
computer, we put these components together to demonstrate protein
RAM computing in two different ways. The first is to explicitly dem-
onstrate how the dynamic self-assembly processes of proteins can per-
form computing. We present idealized (artificial) protein networks
designed explicitly to carry out a numeric computation, g=(a*b)+
(c*d)+ (e*f), where ag are numeric values of specific registers.
Although this numeric computation is not a natural algorithm (in-
deed, we do not expect that living systems implement numeric compu-
tation to any great extent), the objective is to explicitly demonstrate
that the RAM computing properties of proteins we discuss are suffi-
cient to support true computing in an easily recognizable form. We
present stochastic simulations and yield statistics of these idealized
networks and show that, because the computation is stochastic, errors
do occur, even with an adequate energy supply. We discuss a number



DYNAMIC SELF-ASSEMBLY IN LIVING SYSTEMS 325

of strategies used by biological systems to achieve robust functionality
from these “unreliable” stochastic processes.

The second way we demonstrate protein RAM computing is to
examine some real biological dynamic self-assembly processes, in
computational terms, and describe the algorithms they are implement-
ing in the RAM model. Specifically, we present pseudocode programs
for the dispersal and condensation of pigment granules in melano-
phores. In this example, transport of the pigment granules by motor
proteins plays a key role. We also discuss how the condensation algo-
rithm scales to populations of cells and organisms. Then we present a
flow diagram of a program performed by microtubules (MTs), using
dynamic instability to search for stabilizing proteins located around
the cell. Here the RAM program is implemented by the dynamic
assembly and disassembly of physical structures, MTs. This demon-
strates how some of the processes specifically identified by others as
non-computational (assembly, disassembly, and transport) really do
carry out computation from the RAM perspective.

Although our examples are far from exhaustive, they motivate a
broader perspective on natural computing. A living system does not
only process information when sensing and responding to its environ-
ment. It is our view that much, if not all, of the business of a living
system’s building and maintaining itself is also a physical form of sto-
chastic computing.

2. The RAM computing model

Protein interactions map well onto a non-deterministic random access
machine (RAM) model of computing. The RAM model is perhaps
less well known than the Turing machine model of computing. It has
been proved to be equivalent to a Turing machine. That is, any pro-
gram implemented by a RAM machine could be implemented by a
Turing machine and vice versa (Minsky, 1967; Dewdney, 1993). It is
important to note, however, that the protein computing we discuss
here is not equivalent to a umiversal Turing machine —a Turing ma-
chine that can run any computable program on a single set of hard-
ware. Rather, it is equivalent to a Turing machine designed to run
one program with a table of inputs and states that map to outputs
and states. Furthermore, it is a non-deterministic Turing machine, in
which there is more than one output/state that could result from the
same input/state.
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What features or components are necessary for computing with the
RAM model? We review the features here, from Minsky (1967).

(1) First, it requires data registers, a means of storing and accessing
numbers. Registers must be able to hold any size number. Modern
digital computers rely on digital logic and binary numbers. In living
systems, in contrast, registers are commonly embodied in a unary, ra-
ther than binary, representation. It is interesting to note that Minsky
often analyzed registers in proofs as unary rather than binary
encoded.

(i) Computing with the RAM model also requires a small number
of fundamental operations on those registers. There are many combi-
nations of those fundamental operations out of which all computa-
tions can be built. They are all equivalent. That is, it has been proved
that one set of fundamental operations can be computed from any of
the others. The basic set is {zero, increment, decrement/jump, halt}.
“Zero” means set the value of the register to 0, then go on to the
next instruction. “Increment” means add 1 to the value of the regis-
ter, then go on to the next instruction. “Decrement/jump” means if
the value of the register is not zero, then decrease it by 1 and go on
to the next instruction; otherwise jump to some other instruction,
which must be specified. “Halt” means stop the program. If one regis-
ter is already zero at the beginning of the program, then only incre-
ment, decrement/jump, and halt are needed.

The decrement/jump operation is noteworthy because it provides a
mechanism for branching, i.e., decision making. Under one set of
conditions (the register value is non-zero) the program does one
thing; under different conditions (register value is zero) it does some-
thing else. This is an essential part of computing (and living systems
must be able to make decisions in order to branch to different behav-
iors under different conditions).

Minsky (1967) also proved that other operations can be made up
of this fundamental set: copy from one register to another; jump un-
less equal (another branching operation); and repeat, or loop. It is a
trivial exercise to show that the branching operations greater than,
greater than or equal to, less than, and less than or equal to can also
be programmed from the fundamental operations. Thus, we can use
these operations as well in our RAM programs, as if they were sub-
routines. For convenience in comparing to proteins, we shall consider
increment and decrement as operations, and discuss branching, or
decision making, separately.
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(iii) The other requirement for RAM computing is to sequence the
operations. Operation sequencing is taken for granted by program-
mers of modern digital computers, because the operations of the pro-
gram are executed deterministically in the order in which the
programmer wrote them. As will be explained shortly, however, when
computing with proteins, the sequencing is where much of the non-
deterministic aspect of the computing occurs, because it is imple-
mented by stochastic dynamic self-assembly processes.

3. Proteins as elements of a RAM computer
3.1. Registers and their operations

We want to show how proteins (or indeed, other types of molecules
as well) can be used to implement a RAM computer. We discuss data
registers and their operations together. Proteins readily embody data
registers in a unary representation: the current value of a data register
(a number) is represented by a simple count of objects. The fact that
proteins embody numbers in a unary representation is highly signifi-
cant. If we look for binary numbers (to which modem computer users
are accustomed) in biological systems, few if any examples are found,
and the ubiquitous unary numbers are completely overlooked. Fur-
thermore, although binary registers require complex encoding machin-
ery to do even the simple increment and decrement operations
(because of having to carry, borrow, and reset digits), with unary reg-
isters, these same operations are easy to achieve physically. The unary
representation also appears to lend itself well to evolving many differ-
ent ways to store numbers and operate on them. Figure 1 illustrates
several examples of unary registers implemented with proteins or
other molecules.

The simplest example (Figure 1a) is a count of a specific molecular
species. This type of register is incremented by the synthesis of an-
other copy of this species and decremented by the degradation of one
of these molecules. For example, if the molecular species representing
the register is a protein, then the molecular machinery associated with
the expression of the protein (transcription factors, RNA polymerase,
ribosome, etc.) collectively implement the increment operation. The
decrement operation is implemented by mechanisms that can degrade
the protein (e.g., ubiquitination and a proteasome or a protease spe-
cific to the register protein). We question whether, for living systems,
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Figure 1. Illustration of different protein implementations of unary registers and their
values. (a) Count of proteins. (b) Count of proteins in the folded conformation.
(c) Count of phosphorylated proteins. (d) Count of assembled heterodimers.
(e) Count of objects in the pile. (f) Count of proteins within the inner membrane.
(g) Count of phorphorylated sites. (h) Length of polymer. (i) Boolean. whether or not
the MT (line) is bound to the stabilizing protein (circle).

the halt operation is needed, because one could view every program
as a subroutine instead, which leads to another subroutine. Even
death of an organism is not really the end of the program. The mole-
cules of the organism are degraded and processed in other ways, and
are used as inputs to other programs, as those molecules are taken up
into other organisms. Even if a halt operation were needed, it does
not require an explicit implementation. The program would just have
no next instruction to go on to.

A second example implementation of the register plus operations
relies on a molecular species being able to remain stable in two alter-
native conformations, say, conformation A or B (Figure 1b), with the
value of the register given by the number of molecules in conforma-
tion B. Assume that the protein is folded into the default conforma-
tion A when it comes out of the ribosome. Then, a protein that can
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change this protein from conformation A to B can serve as an incre-
ment operator. A different protein that can change B conformation
back to A acts as a decrement operator. Additionally, if B is a meta-
stable state, and will spontaneously (although perhaps slowly) revert
to conformation A, this can be a decrement operation in itself. In this
case, then, the number of molecules in conformation A is irrelevant
(as long as there is always one available to convert to B when nee-
ded). New proteins in conformation A can be synthesized and de-
graded, and this does not affect the value of the register at all.

A third example is to represent the register by a protein that can
be phosphorylated (Figure 1c). A kinase (an enzyme that phorphory-
lates a specific substrate) associated with the register protein can act
as an increment, while the associated phosphatase (an enzyme that
dephosphorylates the substrate) can serve as a decrement. In the same
way, other chemical groups that can be bound to proteins, such as
methyl, nucleotidyl, or fatty acyl groups, can also be used to repre-
sent a register.

There are other variations on this theme. If two molecular species,
say, C and D, that can be stably bound together (e.g., via covalent or
very strong non-covalent bonding) into a heterodimer CD, then the
number of CD heterodimers can represent a register (Figure 1d).
A protein driving the dimerization increments the register; one that
breaks the dimers into their constituents C and D decrements the reg-
ister. This same scheme works even if the two molecules are the same,
e.g., CC dimers could represent a register. Alternatively, the assem-
bled complex could be more complicated than a dimer. For example,
the number of ribosomes in a cell could represent a register, with all
the 80-some proteins and half a dozen or so ribosomal ribonucleic
acid (rRNA) molecules having to be assembled in order to increment
the register. Degradation of the ribosome, effectively taking it “out of
service,” represents a decrement.

Rather, than representing a register by the overall number of ob-
jects anywhere in the cell, it could be represented by a localized popu-
lation - a “pile” of objects (Figure le). Any mechanism that
transports objects to the specific location, to add them to the pile, can
increment the register. Removing from the pile, transporting away
from the location, is a decrement. An example is motor proteins mov-
ing cargo to/from a specific location. An abacus, with the physical
location of beads on each wire representing numbers, is reminiscent of
this type of register. An alternative implementation is the number of
molecules of a particular species within a specific membrane-bound
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compartment (Figure 1f). The transfer of a register molecule across a
membrane from one compartment (e.g., the cytoplasm of a cell) into
another compartment (e.g., into an organelle) effectively decrements
one register and increments the other.

Some molecules or molecular complexes have a large number of
phosphorylation or methylation sites. The number of these sites that
are phosphorylated or methylated can represent a register, with the
appropriate proteins acting as increment and decrement operators
(Figure 1g). Examples of this are methyl-accepting chemotaxis pro-
teins (MCPs), which are transmembrane attractant receptors used in
bacterial chemotaxis. MCPs have multiple methylation sites, and the
number of these sites that are methylated controls signal transduction,
allowing the sensitivity of the signaling network to adapt to changing
concentrations of attractant or repellant (Ideker et al., 2001)

Yet another representation is the size or magnitude of an assem-
bled structure, for example, the length of a polymer, either in units of
monomers or in units of length (e.g., nm). (Figure 1h) Obvious exam-
ples of this are the cytoskeletal filaments MTs, actin filaments, and
intermediate filaments. Each of these polymers is made up of repeat-
ing units of the same molecular building block, self-assembled in a
stable manner. The length of one of these filaments can represent a
register. Processes that grow (shrink) the filament serve as increment
(decrement) operations. We mentioned at the outset of this section
that molecules other than proteins can also act as RAM computing
elements. Deoxyribonucleic acid (DNA) provides two examples of
polymer registers. At the ends of chromosomes in eukaryotes, telo-
meres contain repeated nucleotide sequences. “The idea that telomere
length acts as a ‘measuring stick’ to count cell divisions and thereby
regulate the cell’s lifetime” is supported by experiment (Alberts et al.,
2002, p. 265). Thus, telomeres can be viewed as registers that are
decremented by cell division. King et al. (1997) proposed the intrigu-
ing possibility that the number of simple sequence repeats (SSRs) in
microsatellite DNA acts as a “tuning knob" influencing gene activity.
If this is correct, then SSRs can be viewed as unary registers whose
values are important parameters for the algorithm associated with
gene expression.

Figure 1i illustrates another embodiment of a register that serves
well as representing a Boolean value. Analogous to the examples
shown in Figures lc, d and g, it relies on the binding of one type of
molecule to another. However, in this case of Figure 1i, there is only
one MT (line) and one stabilizing protein (circle), so there are only
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two possible values to the register, 0 (unbound) or 1 (bound). In bac-
terial chemotaxis, the direction of the flagellar motor (clockwise or
counter-clockwise) can also be viewed as a register with only two
values.

Any of these representations of registers and their operations are
equivalent. That is, any physical embodiment of these numerical and
Boolean registers can be used to compute the same algorithm. Thus,
in living systems, many alternative sets of “hardware” can carry out
the same ‘“‘software.” This list of representations is not exhaustive,
but even so, it is interesting to note how many assembly, degradation,
transport, synthesis, etc. activities (i.e., dynamic self-assembly activi-
ties) do map onto these essential properties of the RAM model of
computing.

3.2. Sequencing operations on registers

The third ingredient of RAM computing is sequencing the operations.
Just as there are a number of different physical manifestations of reg-
isters and operations, there are multiple ways that sequencing can be
implemented. They all rely on a few crucial properties of proteins and
their interactions that we have identified as important for dynamic
self-assembly and RAM computation. (1) Proteins have tremendous
selectivity of their binding sites, analogous to a lock and key. (2)
Binding or unbinding a ligand at one of these sites can result in a
conformational change of another part of the protein. This conforma-
tional change can perform some sort of actuation, such as moving
(e.g., in motor proteins) or driving an assembly or disassembly reac-
tion. (The reader should notice that these two properties are also
important for all of the embodiments of registers and operations de-
scribed above.) (3) A conformational change can also expose (or hide)
additional binding sites, which in turn can bind and cause a confor-
mational change resulting in actuation, or exposing or hiding yet an-
other binding site. See Figure 2.

Signaling cascades are easily recognized as a set of interactions
that proceeds in a controlled sequence. A specific sequence of interac-
tions is “‘wired” together by mixing together a set of molecules with
binding sites that drive them to execute sequentially. For example,
suppose each protein has a “‘trigger” site that activates it (e.g., the
phosphorylation site of a kinase that must be phosphorylated itself in
order to be active) so that other sites are exposed, such as a catalysis
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(b)

Figure 2. Tllustration of protein dynamic self-assembly properties important for
sequencing RAM computations. Of the four proteins shown in (a), the textured and
white proteins on the left can form non-covalent bonds through selective binding sites
(b). This results in a conformation change of the white protein, exposing another
binding site, to bind to the black protein (c). This binding again changes the confor-
mation of the white protein to release the textured one to which it was bound. It also
changes the conformation of the black protein, exposing another binding site, so it
can bind to the striped protein (d). The order in which these proteins interact is dri-
ven by the order in which matching binding sites are exposed.

(kinase) site and an ATPase site (to bind and hydrolyze ATP). Sup-
pose kinase A’s catalysis site binds to kinase B and phosphorylates its
trigger site, kinase B’s catalysis site phosphorylates kinase C’s trigger
site, and kinase C’s catalysis site phosphorylates kinase D’s trigger
site. Once A is triggered, then B will execute, followed by C, followed
by D.

The kinase cascade described above can be viewed as either a se-
quence of operations strung together, or as a single sequencing signal.
If each activated kinase species represents a register as in Figure Ic,
then one kinase acts as an increment operator on its substrate. There-
fore, the A - B - C — D pathway would be viewed as
sequencing three increment operations together (A increments B, B
increments C, and C increments D). Alternatively, if the entire
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cascade is sandwiched between other register operations (e.g., the
expression of more copies of one protein and the degradation of an-
other), and the count of molecular species A, B, C, and D is not
important, then the entire cascade may be viewed as a single jump
from one operation to the other. These cascades can thus be viewed
either by the input-output circuit model used by other authors or by
the RAM model, whichever is most convenient for the current pur-
poses.

This dynamic, stochastic sequencing mechanism, provided by the
binding-driven conformation changes of proteins (property (3) above,
and shown in Figure 2), enables Nature to wire together RAM algo-
rithms in a modular, evolvable (Kirschner and Gerhart, 1998) way.
The notion that natural algorithms are modular and evolvable is sup-
ported by the observation that some protein network motifs are seen
over and over in Nature (kinase cascades, for example). These net-
works may be carrying out the same algorithm, but wiring together
the operations on different registers. We can also provide a plausibil-
ity argument for how this sequencing mechanism can facilitate the
evolution of new sequences from existing ones. Returning to our
hypothetical kinase cascade, suppose the effect of phosphorylating
(incrementing) D is to initiate the expression of protein X (because D
is a critical transcription factor for X, for example). Then suppose the
gene for D is duplicated and mutated so that a protein E is produced
that has one protein domain that is identical to D (the one that binds
to C), but another one that is different to stimulate the expression of
Y instead of X). Then the network A - B - C — D — Xis
rewired to A > B - C - E — Y. This dynamic, stochastic
sequencing mechanism enables a potentially major rewiring of the
algorithm sequence, resulting in the expression of Y instead of (or in
addition to) X, from the relatively small change of a single protein
domain.

Another mechanism for enforcing sequence is with scaffold pro-
teins. These proteins enforce a particular sequence of operations by
physically tethering or activating specific proteins (operators) in a par-
ticular order. In the budding yeast Saccharomyces cerevisiae, scaffold
proteins Ste5 and Pbs2 are essential to the mating and high-osmolar-
ity response pathways, respectively (Park et al., 2003 and references
therein). Figure 3 illustrates the role of the scaffold proteins in direct-
ing the appropriate output from the specific input. Although both
mating and osmoresponse pathways involve the protein Stell, they
exhibit no cross-signaling under normal conditions. Ste5 has binding
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(a) Ste5 scaffold (b) Pbs2 scaffold
pheromone high
osmolarity

mating osmo-
response response

Figure 3. After Park et al. (2003), illustration of scaffold proteins that control
sequencing of mitogen-activated protein kinase (MAPK) cascades, The gray back-
ground indicates which proteins are bound by the scaffold protein. Although the
MAPK kinase kinase (MAPKKK) Stell is involved in both cascades, the scaffold
Ste5 (a) ensures that the mating response is the’ outcome of pheromone detection,
whereas Pbs2 (b) directs the osmoresponse to high osmolarity.

sites for the input Ste4, as well as Stell, Ste7, and Fus3, which results
in the mating response. In contrast, Pbs2 binds a portion of the os-
mosensor Shol as input, and also binds Stell and Hogl. Pbs2 itself
also plays a catalytic role in this pathway, leading to the osmore-
sponse (Park et al., 2003)

Interesting new work suggests that pathways directed by scaffold
proteins are also modular and evolvable. Park et al. (2003) have
shown that it is possible to wire together new scaffold proteins, to
redirect the signaling pathway. Specifically, they engineered a diverter
scaffold that enforced a non-natural pathway, in which pheromones
selectively triggered the osmoresponse in S. cerevisiae. They concluded
that “‘scaffolds are highly flexible organizing factors that can facilitate
pathway evolution and engineering.” (Park et al., 2003, p. 1061)

It should be noted that in both types of sequencing mechanisms
described here, the binding rates between protein components are sto-
chastic. Thus, the execution time of a particular sequence of operations
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is not fixed. Rather, it follows some distribution. Additionally, during
the time between the exposure of a binding site and the event of it bind-
ing to a ligand, the algorithm can be re-wired ““on-the-fly” by the inter-
vention of a different compatible ligand. For example, the D-binding
site of the C kinase in the pathway A - B— C — D — X may
be exposed, but before it binds to a D molecule, an E molecule is syn-
thesized and interacts with the C, thus dynamically rewiring the path-
way to A > B - C - E — Y. This effect is one factor that
makes computing via protein dynamic self-assembly processes stochas-
tic and nondeterministic RAM computing.

3.3. Branching (decision-making)

The rewiring of a pathway just described is one form of branching, or
decision-making. Another type of branching results from a competi-
tion between two populations, e.g., kinases and phosphatases that act
on the same type of protein. Assume that when the target protein is
phosphorylated it is activated as an enzyme for some reaction. In a
deterministic sense, if there are more kinases than phosphatases for
the target proteins, then the kinases will “win,” and some target pro-
teins will remain phosphorylated, so that they can catalyze their reac-
tion. If there are more phosphatases, then they “win,” and no target
proteins stay activated long enough to perform their catalytic func-
tion. This represents an algorithm like ““if @>b, then do x”°, where a
represents the population of kinases, b the population of phosphata-
ses, and “do x” is the reaction catalyzed by the target protein. How-
ever, because the kinase and phosphatase molecules diffuse around in
the “soup” of the cytosol, reacting at random with the target pro-
teins, there is a “‘race” between the two species to react with the tar-
get protein. Sometimes when there are fewer kinases than
phosphatases, a phosphorylated target protein will have the opportu-
nity to perform its catalytic function before it becomes dephosphoryl-
ated. Similarly, occasionally when there are more kinases than
phosphatases, the target protein will not get a chance to catalyze a
reaction before being dephosphorylated. Statistically, when a>>b, “do
x” will almost always occur, and when a<b, “do x” will almost
never occur, but when a~ b, there is a smooth sigmoidal transition
where the probability of “doing x” goes from 0 to 1. Thus, the sto-
chastic nature of such races leads to “‘errors” in computation, particu-
larly when the race is close.
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Decision making or branching can also be accomplished with only
one or two molecules. The only requirement is two possible out-
comes. For example, a new tubulin dimer could be added to the end
of a MT (increment), or the last tubulin dimer might dissociate (dec-
rement). A motor protein may take another step along the cytoskele-
tal fiber to which it is currently bound, or it might fall off. In both
of these cases, there is a “‘race” between two stochastic events. There
are two possible outcomes; the decision is made by whichever one
happens first. In general, the decision-making/branching we observe
in Nature involves some sort of race or competition. The decision
is made to follow the ‘“winner” - the faster, stronger, or more
numerous.

3.4. Hierarchical RAM computing in living systems

The RAM computing model is applicable to living systems not only
at the level of protein networks, but at other hierarchy levels as well.
By encapsulating proteins within membranes (the nuclear membrane,
organelle membranes, or the cell’s plasma membrane), RAM algo-
rithms can be carried out at the level of cellular networks. Then, by
encapsulating cells within another “membrane” (e.g., a skin or exo-
skeleton), algorithms can again be carried out at the level of organism
networks. In this way, RAM programs can be scaled up to greater
spatial and temporal scales.

Since cells and organisms are readily observed to make decisions
and change their behavior, the branching and sequencing aspects of
the RAM model are obvious at these levels, so we will not discuss
them further. What may not be obvious is how the registers and their
operations are represented at the cellular or organism levels. Here,
again, living systems embody registers in a unary representation,
which can perhaps account for their lack of previous recognition. Fig-
ure 4 shows some examples of similar registers and operations at the
levels of proteins, cells, and multi-cellular organisms. In Figure 4a,
the number of proteins is the register, and synthesis and degradation
of the proteins are the increment and decrement operations, respec-
tively. Compare this to Figure 4b, in which the number of cells is a
register. Cell division increments the register; apoptosis (or other
mechanisms of cell death) decrements the register. Figure 4c shows a
population of organisms as a register. Birth is an increment; death is
a decrement.
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Figure 4. Illustration of registers and their operators at different hierarchy levels. In
(a)«c), the register is represented by the number of objects, (a) molecules, (b) cells,
and (c) organisms. The increment (decrement) operations are shown in the lower left
(lower right) corners of each panel. In (d)«f), the register is represented by a localiza-
tion of objects in the center, (d) intracellular cargoes, (e) bacteria, and (f) ants. Incre-
ments (decrements), illustrated by + (—) arrows, are implemented by (d) motor
proteins adding (removing) cargoes from the center, (e¢) bacteria moving by chemo-
taxis to (from) the food source, and (f) ants walking to (from) the food pile.

We mentioned above (and illustrated in Figure le and f) that a
localized collection of objects can represent a register. Figure 4d
illustrates a cell in which motor proteins carry cargo by “walking” on
MTs (lines radiating outward from the center). MTs are cytoskeletal
filaments that nucleate on a protein complex, the centrosome, usually
located near the nucleus of a eukaryotic cell. The number of cargoes
at the centrosome represents a register. Motor proteins carrying cargo
to the centrosome increment the register; those carrying cargo away
decrement it. This is analogous to Figure 4e, which illustrates bacte-
rial chemotaxis. The number of bacteria that have reached the attrac-
tant (e.g., food source) in the center represents a register. Each
individual bacterium’s arrival at the food source increments the
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register. A bacterium that leaves the attractant serves as a decrement.
Figure 4f shows ants arriving at a food source, incrementing the regis-
ter (number of organisms at the source). When an ant leaves the
source, it decrements the register.

Although these examples are far from exhaustive, they illustrate a
key point. Just as, at the molecular level, the same algorithms can be
implemented by different hardware, the same algorithms can even be
implemented at different hierarchy levels, again with different hard-
ware. We hypothesize that the algorithms that life does implement are
the ones that (i) result in the persistence of life, and (ii) can be repro-
duced at the next level, so that life can scale up and evolve more
complex forms. Indeed, there may be survival advantages for algo-
rithms that can be implemented in many different hardware forms.
That is, the algorithms that survive evolution may be the very ones
that can be re-used robustly in many different contexts.

4. Numeric computation with idealized protein networks

So far we have discussed how protein dynamic self-assembly (or cells
or organisms) can be used to implement all the individual ingredients
of the RAM model of computing. Now we demonstrate how these
ingredients can be put together to create a specific algorithm. We
present stochastic simulations of protein networks explicitly designed
to implement a numeric computation. Although this numeric compu-
tation is not a natural algorithm, this demonstrates how the RAM
computing properties of proteins we have been discussing are suffi-
cient to support true computing in an easily recognizable form. In-
deed, we believe it is possible that with today’s biotechnology
capabilities, these artificial proteins could be synthesized to carry out
numeric computation if desired.

4.1. Stochastic simulations

Computer simulations are applied widely to simulate cellular pro-
cesses and predict future behavior. See, for example, Endy and
Brent (2001) and references therein. For example, the chemical net-
works controlling bacterial chemotaxis (Bray et al., 1998; Alon
et al., 1999), developmental patterning in Drosophila (Burstein,
1995), and infection of E. coli by lambda phage (McAdams and
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Shapiro, 1995) have been modeled. Stochastic methods (Gillespie,
1976) are particularly valuable in representing chemical reactions
involving relatively small numbers of reactant molecules, when the
continuous-variation approximation of differential equation methods
breaks down.

To demonstrate numeric computation using the RAM computing
protein properties described above, we developed stochastic simula-
tions similar to those employed by the biological community. Each
molecule is represented by an “agent,” a collection of binding sites
that can bind selectively to sites of other molecules. To initialize the
simulation, pairs of molecules with matching binding sites are se-
lected for reaction. A time for each reaction is randomly selected
from an exponential arrival-time distribution, P(7) ~ exp(—t/1),
where P(t) is the probability of the reaction occurring at time ¢, and
the parameter t is characteristic of the reaction type. The reactions
are scheduled on a priority queue with the smallest reaction time in
root position. Then, the first reaction is removed from the priority
queue and executed. In the process of executing the reaction, the pro-
tein can (via a conformation change that is not explicitly modeled)
actuate, such as taking a step, and/or expose, hide, or change the
reaction rates of other binding sites. The events on the priority queue
are updated accordingly. Then the next reaction in the priority queue
is removed and executed. This process is repeated until there are no
more reactions on the queue or the user terminates the simulation.
This approach is similar to the Gibson-modified Gillespie algorithm
(Gibson and Bruck, 2000); a detailed description of the simulation
infrastructure is provided elsewhere (Bouchard and Osbourn, 2004).

4.2. Idealized proteins as RAM components

For simplicity, we implemented register proteins of the variety illus-
trated in Figure 1b. A register protein can be in one of two confor-
mations, A or A’, for register A, for example. The number of proteins
in conformation A’ represents the value of the register. Increment and
decrement/jump operators change a register protein from one confor-
mation to the other. We could have implemented any other embodi-
ment of registers and their corresponding increment and decrement/
jump operators, and the results would be identical (with stochastic
variations).
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Protein dynamic self-assembly processes are non-equilibrium, en-
ergy-driven processes. Adenosine triphosphate (ATP) is a common
energy currency used by Nature. We have designed the increment and
decrement/jump operators to harness the hydrolysis of ATP to drive
the conformation change of the register proteins. Note that, since
these idealized proteins are to perform a numeric computation, we
have designed them explicitly to only increment or decrement the reg-
ister by 1 each time it is triggered. This is in contrast to the more
common behavior of real enzymes, which can catalyze numerous
reactions after initial activation. This design is justified, however, by
the fact that some proteins do have a mechanism for repeated trigger-
ing by consuming free energy. For example, it has been shown that
kinesin, a motor protein, hydrolyzes one ATP molecule per step
(Schnitzer and Block, 1997). This could be viewed as having to be
triggered again (by the arrival of a new ATP molecule) after each
step.

In order to be able to distinguish between the increment and decre-
ment/jump operators of different registers, we adopt the notation
[+]reg and [—]reg/jump, where reg can be any register A, B, C, etc.
We refer to any molecule —protein, ATP, etc. —as an “agent.” Signal-
ing proteins, which can toggle between two conformations, exposing
only one of two binding sites at a time, are used to wire together se-
quences of [+]reg and [—]reg/jump operators. Figure 5 illustrates the
interactions of the [-]A/jump agent with the signaling proteins, regis-
ter proteins, and ATP. Agents are represented by polygon shapes.
The binding sites are shown as tabs at the perimeter of the agent.
Complementary sites are indicated with numerical keys. (e.g., 4 and
—4 are complements). When the sites of two agents are bound, they
are shown as touching. The [-]A/jump agent is labeled, as are the
ATP agents. The two collections of agents to the right represent a sin-
gle register. The alternate conformation (A’) of the register protein is
shown in white. Initially, in panel (a), the value of the register is five,
and the [-]A/jump agent has a single “trigger” binding site exposed,

Figure 5. Illustration of the decrement operation. (a) The [-]A/jump and ATP agents
are labeled. The two collections of agents to the right represent a single register with
a value of 5 (A’ agents are white). (b) When the [-]A/jump agent is triggered, it binds
to an ATP and an A’ register protein. (c) Then it changes the conformation of the
register protein, thereby decrementing the register, releases the ATP and register pro-
tein, and signals success.
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“Trigger” site
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with a key of 1. It also has four other sites that are hidden (they have
an invalid key, 0). In panel (b), when a signaling agent with a comple-
mentary key of —1 binds with the trigger site of the [-]A/jump agent,
two additional sites are exposed, with key values of 2 and 3. When
the trigger site unbinding event occurs, if (as in panel (b)) both the
ATP and register proteins are bound to these two sites, then in panel
(c), the hydrolysis of ATP drives the [-]A/jump agent to change the
conformation back to the default (note that in panel (c), there are
only four A’ register proteins, and an additional A version), release it
and the “spent” ATP, and expose the “done” site with a key of 5.
When the trigger signaling protein breaks from the [-]A/jump agent,
it changes conformation (exposing a —7 key) so that it cannot imme-
diately re-trigger the operation. Some other agent will have to bind to
the exposed —7 binding site and toggle the trigger back to a key of —1
in order to re-trigger the [-]A/jump agent. In panel (c), a signaling
protein with a key of —5 is bound to the done site of the [-]A/jump
agent. When released, it will toggle to a key of —8, enabling it to act
as a trigger signaling protein for the next [+ ]reg or [—]reg/jump oper-
ator (not shown) in the sequence (whatever operator has an exposed
trigger site with a key of 8).

If there had been no register protein bound when the trigger site
unbinding event occurred, then the “jump" site (lower right site of
the [-]A/jump agent in Figure 5) would have been exposed with a
key of 6, rather than the done site with a key of 5. As a result, a
different signaling protein would become bound to the jump site,
and a different execution path would follow. Certainly, if there are
no A’ versions of the register protein (i.e., the register value is zero),
then the jump pathway will be taken. However, there is a “‘race”
between the arrivals of the register protein and ATP on the one
hand and the unbinding of the trigger site on the other. The stochas-
tic nature of this race will produce incorrect jumps (when the regis-
ter is non-zero) with some probability that depends on the relative
rates involved.

The increment agent, [+]reg, is similar to, but slightly simpler
than, the decrement agent. The binding of the trigger site exposes the
ATP- and register-protein-binding sites. The ATP key is the same, 2,
but in this case the register-protein-binding site’s key is 4, to bind to
the default (A) version of the register protein. To increment the regis-
ter, it changes the conformation of the register protein to A’ (i.e.,
changes its key to —3), then exposes a done site with a key of 9.
There is no “jump’ associated with the increment operation.
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4.3. Numeric computation

We have implemented simulated protein networks for elementary
operations such as zeroing a register, register copying, adding con-
tents of one register to another, using a register to control the number
of loops through a repeated sequence of agent operations, multiplying
two register contents into a third register, and computing a modulus
of a register value.

To illustrate how this simple set of agents can accomplish such
computations, Figure 6 shows a schematic diagram of the network of
proteins required to multiply two registers, A and B, into a third reg-
ister G. Only the increment and decrement agents are shown. Each of
these agents in the actual simulation interacts with the register pro-
teins and ATP, as shown in Figure 5, but these are omitted from Fig-
ure 6 for clearer viewing of the execution sequence itself. Recall that a
signaling protein toggles between two binding sites, so that it can wire
together a sequence by binding first to the “done” or “‘jump” site of
one agent, and then to the trigger site of the next agent. A solid ar-
row represents a pathway that a signaling protein makes from the
done site of one agent (tail of the arrow) to the trigger site of the next
agent (head of the arrow). A dashed arrow represents a signaling pro-
tein’s pathway from the jump site of one agent to the trigger site of
the next agent.

restore B

start , '(7‘)

add B into G (and H)

Figure 6. Schematic diagram of protein network to multiply registers A and B into
register G (see text for discussion).
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The order in which the signals are propagated is indicated by a
number in parentheses along the signaling pathway. We will describe
the sequence using an example in which registers A and B are ini-
tially set to 2 and 3, respectively, and G and H are both 0. A start
signal (1) triggers the decrement of register A, so that we now have
A=1. We then (2) enter a loop contained in the lower box in the
figure. In this loop, B is decremented, (3) G is incremented, and (4)
H is incremented. (It will become apparent shortly why we must
increment H.) The loop is repeated (5), beginning with the decre-
ment of B. After three passes through the loop, B=0, and
G=H=3. This loop has the effect of adding the value of B into
registers G and H. The next attempt to decrement B will find a
zero-valued B register and therefore jump (6) to the next loop to re-
store B from H (upper box). In this loop, (7) and (8), H is decre-
mented and B incremented until H=0 and B=3. When we attempt
to decrement H again, it jumps (9) to decrementing A (A=0), and
then the entire outer loop, (2)-(9) is repeated, so that G=6(=2%3,
the original values of A*B). On the next attempt to decrement A, it
jumps (10) to whatever the next operation might be in a more exten-
sive calculation.

For this illustration, we have described the ideal, ““‘correct” behav-
ior of the network. However, any time a decrement occurs, it could
jump even though the register is non-zero, due to the stochastic nat-
ure of this agent. So, in fact, there are numerous opportunities for
errors in even this simple computation.

4.4. Simulation results and discussion: stochastic computing, errors, and
entropy

We present results of stochastic simulations of encapsulants comput-
ing g=(a* b)+(c*d+(e*f), where a through f are initial values of
registers A-F, and g is the answer stored in register G. An encapsu-
lant is analogous to a cell’s plasma membrane, in that it isolates its
internal population of agents from binding externally. Thus, multiple
encapsulants can have identical agent populations carrying out the
same calculation in parallel with no interference. We simulate a small
population of encapsulants with identical internal component popula-
tions and examine the error rates and configurational entropy (Sconfig)
of this system as a function of time. For this analysis, we consider
two encapsulants to be in the same configuration if all of the [+ ]reg



DYNAMIC SELF-ASSEMBLY IN LIVING SYSTEMS 345

and [—]reg/jump agents and signaling proteins are in the same binding
state and all of the register populations have the same associated inte-
ger value. Sconsig Of these small populations can be zero when all
encapsulants are in the same configuration, so that these encapsulants
are far from equilibrium. The stochastic nature of the jump opera-
tions and stochastic rates of the other operations means that such a
set of identically configured encapsulants with Sconh,=0 will not
remain so, and S, Will tend to increase with time (but not mono-
tonically, as we show below). The maximum S, condition is for
each encapsulant to be in a unique state.

The simulation begins with a population of 10 duplicate encapsu-
lants, but with randomly selected initial register values. The first
phase of the simulation is to copy all register values from a single
“starter’” encapsulant to the other nine encapsulants, so that they all
begin the calculation with the same values in registers A-F. Figure 7
illustrates the process of copying register A from the starter encapsu-
lant to two other encapsulants. Initially (Figure 7a), the encapsulants
have different values in register A. The starter encapsulant signals one
“copy-signal” transmembrane protein per register (Figure 7b), which
exposes sites externally (Figure 7c). In the other encapsulants, an
algorithm is launched to zero out all of the registers (Figure 7b).
When this is complete, they signal to transmembrane ‘“‘copy-receptor”
proteins, one for each register, so that they expose sites external to
the encapsulant (Figure 7c). The copy-signal-A from the starter en-
capsulant binds to the copy-receptor-A of any of the other encapsu-
lants (Figure 7d). The copy-signal/copy-receptor complex provides
inter-encapsulant (analogous to intercellular) communication. Note
that this is analogous to individual proteins’ exposing binding sites
and binding together, only it is on the next higher hierarchy level.
The starter encapsulant decrements A, increments H, and then signals
the copy-signal protein. The copy-receptor receives the signal and
increments that encapsulant’s A register, then returns the “done” sig-
nal to the receptor/signal complex, which stimulates another decre-
ment in the starter encapsulant. This loop repeats until the starter
encapsulant’s register A is zero. In this way, the value of register A
gets copied from one encapsulant to another. In the process, the star-
ter encapsulant also copies A to register H, so that when the copy to
the other encapsulant is complete, it can restore the value of A (Fig-
ure 7e¢). Note that this copy algorithm is identical to the two boxed
loops in Figure 6, except that the G register is replaced by the A
register of a different encapsulant.
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The starter encapsulant then breaks the bond to the current encaps-
ulant and can bind to another encapsulant’s exposed copy-receptor
and copy A again to that encapsulant (Figure 7f), restoring A from H
again each time (Figure 7g). It keeps looping through encapsulants un-
til all of its registers have been copied to all other encapsulants. After
some waiting time during which no other encapsulant binds to the
starter encapsulant’s copy-signal, it decays to the inactive state, so that
it is no longer exposed externally. If the copying occurred without er-
ror, the system is left in a zero-entropy configuration (Figure 7g).
However, there is a non-zero probability that one or more register
copy operations will produce an incorrect register value, so this pro-
cess occurs with some “‘yield.” When the copying is completed, a syn-
chronizing encapsulant is used, to trigger the calculation (Figure 8).
(Again, protein signals are used to communicate between encapsulants
at the “cellular network™ level.) The calculation process then proceeds
to completion, also with some “‘yield” of correct register values.

The averaged yields of final results were obtained from 220 simula-
tions. Figure 9a shows the average yield for the computation as a func-
tion of ATP concentration. These results make clear that the dynamic,
non-equilibrium behavior of these encapsulated protein networks is dri-
ven by the free energy of the ATP population. If the system does not
have sufficient energy (ATP), it cannot perform the computation cor-
rectly. Even at high ATP concentrations, the yield is not perfect, due to
the stochastic race of the decrement/jump operations.

Figure 9b shows a scatter plot of final normalized entropy (Sconfig
divided by its maximum) as a function of errors in the final answers.

4

Figure 7. Illustration of copying register A from starter encapsulant to the other two
encapsulants. Register A is represented by parallelograms (A”) and diamonds (A).
Register H is represented by triangles. (a) Initially, the values in the encapsulants are
a=2,4, and 5; h=0. (b) Starter encapsulant (upper left) signals to copy-signal; other
encapsulants zero register A, then signal to copy-receptor. (c) Starter encapsulant’s
copy-signal exposes 3 externally; other encapsulants’ copy-receptors expose — 3 exter-
nally. (d) Starter encapsulant and second encapsulant bind via copy-signal/copy-
receptor complex, and copy the starter encapsulant’s register A to its register H and
the other encapsulant’s register A. (e) Starter encapsulant restores A from H; second
encapsulant’s copy-receptor no longer externally exposed. (f) Starter encapsulant and
third encapsulant bind and copy. (g) Starter encapsulant restores A from H; third
encapsulant’s copy-receptor no longer externally exposed. (h) After copying to all
encapsulants, starter encapsulant’s copysignal no longer externally exposed; encapsu-
lant population in zero-entropy state.
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g=(a*b)
+c*d)
+(e*f)

Figure 8. When all registers A-F have been copied from the starter encapsulant, the
sync encapsulant releases signals to all 10 of the identical encapsulants to begin com-
puting g= (a*b) + (c*d)+ (e*f) at nearly the same time.
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Figure 9. Results of 220 stochastic simulations of 10 encapsulated idealized protein
networks, each computing g=(a*b)+ (c*d) + (e*f). (a) The fraction of encapsulants
with the correct final results as a function of ATP concentration, (b) Normalized final
entropy vs. fraction of encapsulants with errors in their final results.

These results show that ending in a more highly ordered state (low
entropy) is clearly correlated with high yields of correct computational
results (low errors), so that maintaining far-from-equilibrium configura-
tions is the desired outcome for these protein networks. The entropy
captures all configurational differences, including those that do not
disrupt the final register values, and this produces the scatter in the plot.
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The Sconfie as a function of time for a single computational run is
shown in Figure 10. We have chosen a case where all of the encapsu-
lants are correctly copied, and all but one of the encapsulants
achieved the correct result. Sconfe begins at a large value due to the
initial randomized values of the registers in each encapsulant. The
register-copying phase is completed at ¢+ ~ 5000, in a totally ordered
configuration of encapsulants (Sconfie =0). The calculation is initiated
at ¢ ~ 22000, and while each encapsulant is performing its calcula-
tion independent of the others, their configurations again diverge
(Sconfig=1). Finally, all of the encapsulants reach a finished state,
with all but one encapsulant reaching the same final state (low, but
non-zero Sconfig). Thus, this non-equilibrium process is cyclic in the

Sconﬁg-

4.5. Yielding robust outcomes from “‘unreliable” stochastic processes

Figure 10 illustrates the tendency of these stochastic computational
processes to increase their Sconhe after a computational cycle. After
the completion of the computation, the entropy is not exactly zero,
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Figure 10. Normalized entropy as a function of time for a single simulation from
Figure 9 in which all of the encapsulants are correctly copied, and all but one of the
computations achieved the correct result.
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but slightly non-zero. This is a manifestation of the slow equilibration
of the configurational degrees of freedom. This clearly prevents arbi-
trarily long computations from being performed in the simple manner
described above. That is, if a number of such computations were
strung together in a sequence, and if no error correction mechanism is
applied to restore the entropy to zero occasionally, then after several
computations, the system would have equilibrated to the point where
the correct answer could not be recovered. The imperfect yield in the
computational processes described here has some similarities to the
classic problem of communicating through a noisy channel (Shannon,
1948). Here we have a more general process of noisy computing pro-
cesses (state transitions) in addition to noisy information transfer.

It may seem objectionable that Nature could rely on stochastic
processes, if they give incorrect answers under even favorable condi-
tions, as shown in these simulations. How can a reliable outcome be
achieved, if the system is slowly equilibrating? First, we do not ex-
pect that living systems perform numeric computation to any great
extent. Although they do compute, they are computing something
other than numbers. We speculate that the algorithms implemented
by living systems are really a way of programming dynamic self-
assembly. (This notion will be illustrated in the later section entitled
“RAM Programs in Living Systems.””) So, there may not actually be
a ‘“‘right answer” in the numeric sense. Second, we know that
Nature relies on ‘‘unreliable” stochastic processes, and yet, is ex-
tremely robust. We examine here some of Nature’s strategies in
dealing with stochastic processes, and discuss how they can indeed
achieve reliable outcomes.

One of Nature’s strategies is to value function over form, so that
many imperfect forms (made by imperfect processes) can successfully
fulfill the required function. For example, every bird’s nest is unique
and imperfect, with different numbers of twigs, different asymmetries,
etc., but when completed, imperfect or not, it serves the function of
holding eggs. A human’s vascular system does not consist of perfectly
straight or perfectly positioned blood vessels. In every individual, they
are uniquely placed, with bumps and twists; they grow at different
rates during development. However, as long as the two vascular sys-
tems carrying blood to and from the heart join up, they serve the
function of allowing blood to flow in a complete circuit. Whether or
not the structure performs its intended function is the criterion for
acceptance. A bird’s nest with too large a hole will not hold eggs, nor
will a vascular system with a large hole or closure.
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A second strategy is to cycle imperfect stochastic processes repeat-
edly until success is achieved. The MT search-and-stabilize algorithm
discussed in a later section of this paper is a perfect example of this
strategy. Each MT repeatedly cycles through growth and collapse,
growing in an arbitrary new direction each time, until it locks onto a
stabilizing protein and becomes fixed. Scout ants search for new food
sources, but may return to the colony empty-handed. Multiple scouts
continue going out in different directions and coming back, collec-
tively covering as much territory as possible until food is found. Then
they “lock on” to that food source, recruiting large numbers of work-
ers to gather the food to the nest.

A third strategy is to wait for one stage of growth or development
to be fully completed, passing a ‘“‘checkpoint,” before initiating the
next step. The cell-cycle control system has checkpoints to ensure that
cell division occurs only when conditions are right, and that it pro-
ceeds successfully. A cell should only divide if it is large enough and
the environmental conditions are favorable for cell proliferation. The
G; checkpoint halts the cell cycle until the situation is right, before
committing itself to DNA replication. The G, checkpoint gives the
system another opportunity to halt, to ensure that DNA replication is
completed, before triggering mitosis (Alberts et al., 1998) Another way
to look at this is as a mechanism for restoring order (i.e., configura-
tional entropy to zero) at different stages in the algorithm, with each
restoration occurring before the distribution equilibrates too far. We
are currently developing simulations to apply this strategy to equili-
bration of the numeric computation via idealized protein networks dis-
cussed above and shown in Figure 10. The simulation implements a
hierarchical algorithm (i.e., in which the encapsulants act as agents) to
restore low entropy in order to correct computational errors.

In earlier sections of this paper, we identified the properties of pro-
teins that map directly onto the RAM model of computing. The point
of this section was to explicitly demonstrate how proteins could carry
out a numeric calculation, g=(a*b)+ (¢ *d)+ (e*f), that we clearly
recognize as computing. We devised artificial proteins (but with all
the important dynamic self-assembly properties of real proteins!) to
carry out this computation explicitly in the RAM model. We also
demonstrated the importance of maintaining far-from-equilibrium
conditions in order to achieve a robust (low-error) outcome from the
computations, and suggested strategies (algorithms) that biological
systems employ for driving down the entropy in order to realize cor-
rect outcomes.
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5. RAM programs in living systems

Now we move on to real proteins in real living systems and examine
what algorithms they actually carry out. That is, by scrutinizing a spe-
cific biological process, we identify unary registers and the mechanisms
of incrementing and decrementing those registers. Then we track the
sequencing of those operations in order to capture explicitly (in pseudo-
code or a flow diagram) the RAM program corresponding to that bio-
logical process. We have two motivations for wishing to understand the
algorithms that living systems implement. First, if biological systems
are computing via dynamic self-assembly, then these self-assembly pro-
cesses must be programmable. We wish to learn the “programming lan-
guage,” and then use it to program dynamic self-assembly, to build
novel structures and materials. Second, perhaps understanding the
algorithms of biological systems will provide some insight into their
ability to develop, persist, reproduce, and evolve. In this section, we
present two examples of protein behaviors in living systems, and discuss
how these behaviors can be viewed as RAM programs. These examples
are relatively simple, but they do demonstrate how RAM programs can
be implemented in real systems and give us the first steps toward under-
standing this different kind of programming language.

5.1. Melanophore programs using active transport

In fish skin cells (melanophores), pigment granules (cargoes) with
both inward- and outward-walking MT-associated motor proteins en-
able the cell to change color. One cellular signal drives the inward
motors to carry the pigment to the centrosome, leaving the body of
the cell free of pigment, thereby making the cell transparent. Different
cellular signals stimulate the outward motors to disperse the pigment,
making the cell opaque (Skold et al., 2002).

We identify a collection of pigment particles at the centrosome (as
in Figure 4d) as register A. An accumulation of pigment particles
anywhere else within the cell represents registers B, C, D,..., as many
registers as necessary to account for all of the collections of pigment
particles at any time. Anywhere a single pigment granule sits by itself
is a register of value 1. A motor protein that carries a pigment gran-
ule to a pile increments that register, while one that carries a pigment
granule away from a pile decrements the register. So, with these defi-
nitions, if a pigment granule is sitting by itself (B=1) and a motor
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protein moves it somewhere else, this is equivalent to (decrement B,
increment C) so that (B=0; C=1).

There are two algorithms we want to examine. One is to disperse
the pigment; the other is to condense it at the centrosome. We write
the algorithms as if they were deterministic and carried out in a single
thread, because such notation is easier to make clear. We use italics
for variables, normal text for constants and operations.

The dispersal algorithm could be viewed as

loop:
forreg=A,B,C, D,...
for i = n(reg) down to 1
decrement reg
next i
next reg
until n(reg) = 1 for all reg

where n(reg) is the value in register reg. Although this is written as if
there are three nested loops, nested in a particular order, in reality,
there is no real ordering. All of the registers can be decremented simul-
taneously, and multiple decrements can occur on a single register at
the same time. Because when a register is decremented, it might inad-
vertently increment another register, we add the outer loop to split up
piles that accidentally got piled together. In a deterministic sense, the
process continues until every pigment granule sits alone. That would
be perfect dispersal. However, because of the stochastic nature of the
system, there may be places (including at the centrosome) where a
small number of pigment granules stay together, so that the registers
are not exactly one. Nevertheless, the end result is close enough to
have the physical effect of making the cell opaque.

The condensation algorithm can be written as

for reg =B, C, D, ...
for i = n(reg) down to 1
decrement reg
increment A
next i

next reg
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Again, the loops need not be performed in order. The important part
is “decrement reg; increment A.” All pigment particles can be moved
to the centrosome simultaneously. The outcome of a deterministic
version of this algorithm would be every granule residing at the cen-
trosome (register A). However, again because of the stochastic nature
of the system, perhaps not every particle will be moved to the centro-
some, but it will be close enough that the cell is transparent.

These programs are so simple that no branching is required. Since
all registers can run in parallel (i.e., the innermost loop of both pro-
grams is like a subroutine that can be run on each register simulta-
neously), there is very little sequencing to enforce either. It just needs
a signal to start either the dispersal program or the condensation pro-
gram on each register. Then the only sequencing within the program
is the (decrement reg, increment A) sequence of the condensation pro-
gram. This is implemented easily by the motor protein not stopping
until it reaches the centrosome. This behavior is natural to a motor
protein as long as the conditions in the cell are such that the inward-
walking motor is more active than the outward-walking motor.

5.2. Scaling algorithms to higher hierarchy levels

As mentioned previously, the same RAM algorithms can be imple-
mented by hardware at different levels of hierarchy (and therefore at
different scales), such as populations of molecules, cells, or organisms.
We just described the condensation algorithm for populations of mole-
cules in a melanophore. This same algorithm is applicable also to bacte-
ria in chemotaxis. The motility of each bacterium itself acts as a
combination of decrementing another register and incrementing register
A, the number of bacteria at the focus of the attractant. Similarly, one
could view the number of ants (or food particles) in an ant colony as
register A. The ants gather food from other locations (other registers)
to the colony, decrementing the other registers and incrementing regis-
ter A. Hence, this one condensation, or “gathering,” algorithm is imple-
mented in Nature on at least three different scales or levels of hierarchy.

5.3. Search and stabilize program using structural assembly

The second example program we describe has much more complicated
sequencing, with numerous branches and loops. In contrast to the
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previous example, where active transport was used to operate on reg-
isters, in this example registers and their operations are implemented
by the structural assembly of MTs. In order to put this example in
context, we briefly review a current well-accepted model of MT
growth and dynamics (Alberts et al., 1998, 2002). In Nature, o- and
B-tubulin dinners stack together by non-covalent bonding to form the
wall of a cylindrical microbule. The cylinder is made from 13 parallel
protofilaments, each a linear chain of alternating o- and B-tubulin. In
a living animal cell, the concentration of af-tubulin dimers is too low
to drive the nucleation of the first ring of a MT. Instead, nucleating
sites of y-tubulin are provided by the centrosome, and af-tubulin can
bind to and grow a MT from each of these nucleating sites. Each free
af-tubulin is tightly bound to a guanosine triphosphate (GTP) mole-
cule that is hydrolyzed to guanosine diphosphate (GDP) shortly after
the tubulin is added to the growing MT. Whereas the GTP-bound
tubulin packs efficiently together, GDP-tubulin molecules have a dif-
ferent conformation and bind less strongly to each other. If GTP-
tubulin is added faster than the GTP in the MT is hydrolyzed, a cap
of GTP-tubulin holds together the growing end, and the MT contin-
ues to grow for some time. However, if, due to the randomness of
chemical processes, the GTP is hydrolyzed all the way to the end of
the MT before new GTP-tubulin is added, the weakly interacting
GDP-tubulin at the end will unravel the MT, often in a catastrophic
manner. This alternating MT growth and collapse, due to the stochas-
tic nature of the race between adding GTP-tubulin and hydrolyzing
the GTP to GDP, is termed dynamic instability. If a MT collapses
completely, a new one is quickly nucleated in its place, and its growth
(and dynamic instability) is, in general, in a different direction from
the previous MT. In living cells, dynamic instability is a natural and
common behavior of MTs. Dynamic instability can be suppressed,
however, by stabilizing proteins that bind to the ends of MTs (or
along their length), stabilizing them against disassembly. Such stabi-
lized MTs serve as tracks for the transport of intracellular cargo by
motor proteins, and help position organelles where needed by the cell.
Therefore, dynamic instability, and specifically growth in a new direc-
tion after complete MT collapse, provides a mechanism for searching
the space of the cell until the stabilizers are located and bound in a
long-term physical structure in support of the cell’s activities.

Now let us examine this search-and-stabilize behavior as a RAM
computer program. Each MT in the cell is executing the same pro-
gram, so here we discuss the algorithm for a single MT. We have iden-
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tified two registers embodied by the MT, a illustrated in Figure 11.
Register A consists of the GTP-tubulin capping the MT; register B is
made up of the GDP-tubulin closer to the centrosome. When a new
GTP-tubulin dimer is added, register A is incremented. When a GTP-
tubulin is converted to GDP-tubulin by GTP hydrolysis, register A is
decremented and register B is incremented. If there is no GTP cap,
GDP-tubulin dimers can dissociate and decrement register B.

Figure 12 shows a flow diagram of the search-and-stabilize pro-
gram. STABILIZED may be viewed as a register with a Boolean va-
lue. This register is implemented by a bond between the end of the
MT and a stabilizer, as in Figure 1i. If a bond exists, STABILIZED
is true, otherwise false. At the beginning of the program, STABI-
LIZED is false. DIRECTION can also be viewed as a register that
represents the direction of MT growth. A DIRECTION is selected at
random (rand) by physical processes.

Then the program enters a network of operations that can branch
and loop, all running in parallel, with each operation occurring at a
stochastic time, depending on diffusion of molecules, collisions, and
binding rates. Adding a GTP-tubulin to the MT increments register A
(operation [+]A). After this operation, two operations follow. Note
that this is the only fork in the flow diagram where both paths are exe-
cuted; all others are conditional branches. On the left branch, if the MT
has reached a stabilizer, it binds to it, setting the STABILIZED register
to true. If not, it loops back to adding another tubulin dimer ([+]JA).

The right branch from [+]A implements GTP-hydrolysis. When
this occurs, at some stochastic time later, this decrements register A

Register A

GTP-tubulin

centrosome

Figure 11. Schematic illustration of registers represented by a MT. When a new
GTP-tubulin dimer is added, register A is incremented. When a GTP-tubulin is con-
verted to GDP-tubulin by GTP hydrolysis, register A is decremented and register B is
incremented.
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start

DIRECTION =rand

re-nucleate o

STABILIZED=T ()] |[A[+B

rescue

If (STABILIZED) /¢

Figure 12. Flow diagram of the MT search-and-stabilize program. Each box repre-
sents a RAM computer operation. A and B are registers as shown in Figure 11.
STABILIZED and DIRECTION are registers that hold a Boolean value and a direc-
tion, respectively; a and b are the values of registers A (number of GTP-tubulin
dimers) and B (number of GDP-tubulin dimers), respectively. Arrows show the
sequencing of operations, with labels indicating branch conditions; there are many
parallel sequences in this program. Growth of the MT occurs through the [+]A oper-
ation; collapse occurs via the [-]B/jump operation; paths that lead to rescue and
renucleation are labeled.

and increments register B. Both occur simultaneously, so we have
shown it as one operation ([-]A; [+]B). Note that we used [-]A ra-
ther than [-]A/jump here. The jump occurs when the value of the reg-
ister is already zero when the decrement is attempted. In this
program, there is no way to reach this instruction if the value of reg-
ister A is already zero, therefore no jump can occur.

After GTP-hydrolysis of one tubulin dimer, what happens next de-
pends on whether all of the GTP has been hydrolyzed. If there are
still GTP-tubulin dimers left in the MT, i.e., the value of register A,
a, is not zero, and the MT is not stabilized, then it loops back to
[+]A, adding another GTP-tubulin. Thus there are two loops in this
program (so far) that represent MT growth, both originating and
returning to [+]A. The left loop implements the situation where mul-
tiple tubulin dimers are added without any GTP-hydrolysis occurring
in between. The right loop includes GTP-hydrolysis, but at a slow
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enough rate that the GTP-tubulin cap remains (¢ # 0) and growth
continues.

If, after the GTP hydrolysis, there are no GTP-tubulin dimers left
(a=0) and the MT is not stabilized, GDP-tubulin can dissociate from
the MT, decrementing register B ([—]B/jump). As mentioned before,
branching (decision making) is one of the mechanisms that make this
type of computing stochastic and non-deterministic. The GDP-tubulin
could begin dissociating before a is exactly zero. There may be a few
dimers of GTP-tubulin left, but not enough to effectively cap the MT.
This is the same sort of “error” that we saw in the numeric computa-
tions described above. However, it is irrelevant from the standpoint of
the physical behavior of the MT, just as the stochastic errors in the dis-
persal and condensation programs of the melanophore were irrelevant.

The [-]B/jump operation branches depending on whether the value
of register B, b, is zero or non-zero, i.e., whether, or not the MT has
completely collapsed. If h=0 (or, with stochasticity, reasonably close
to it), the program loops all the way back to picking a new random
direction and nucleating a new MT. If the MT has not completely
collapsed (b > 0) then the program loops back to two different places
in the program. Another tubulin can be added ([+]A), or as long as a
is still 0 and the MT is still not stabilized, another GDP-tubulin can
dissociate ([—]B/jump). The next operation in both of these loops oc-
curs at some stochastic time later, so essentially they are in a race. If
GDP-tubulin dissociates first ([—]B/jump), then the MT continues to
collapse. If GTP-tubulin is added first ([+]A), the MT can be
“rescued” and the growth mode resumed.

So far, we have examined all of the paths in the program involved
in the “search” part of “search-and-stabilize.”” This fully describes the
algorithm for MT dynamic instability, in which paths that lead to the
growth of the MT ([+]A) race against the paths leading to GTP-
hydrolysis ([-]A; [+]B) and GDP-tubulin dissociation ([-]B/jump). It
also includes nucleating a MT in a new growth direction after the
complete collapse of a previous one.

When the MT encounters a stabilizer and is stabilized (STABI-
LIZED =T), that is the end of the left branch, but not the end of the
program. Recall that different paths through the program are running
in parallel, so there are many paths down the right branch that have
already been “‘launched.” Specifically, GTP-tubulin can still be hydro-
lyzed ([-]A; [+]B). As long as there are still GTP-tubulin dimers in
the MT (a # 0), the program keeps looping back to hydrolyzing it.
Finally, when all the GTP is hydrolyzed (¢=0), the program goes
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into a “‘sleep” mode in which it simply keeps “‘checking” if the MT is
still stabilized. If this loop were programmed on a modern computer,
it would be an infinite loop, and just checking the flag over and over
would be a waste of processing resources. However, in reality, the
MT does not have to do anything active to check. It waits passively
until something occurs to release the stabilizer from the MT. For
example, suppose a signal molecule reaches the stabilizer, stimulating
it to unbind from the MT. At that point STABILIZED becomes
false, and the program immediately switches over to [—]B/jump, re-
launching the race between collapse and growth, and the MT
automatically resumes the dynamic instability, “‘search” part of the
program.

6. Conclusion

In this paper, we have presented the notion that dynamic self-assembly
processes of biological systems - even processes like assembly, move-
ment, synthesis, disassembly, and degradation - can be viewed as car-
rying out RAM computing. We described many different ways that
proteins can implement the features of RAM computing: registers and
their fundamental increment and decrement operations, branching,
and sequencing. We discussed how the RAM computing model applies
at multiple hierarchy levels. Then we demonstrated how proteins
with these properties could carry out a numeric computation
g=(a*b)+(c* d)y+(e* f). We discussed how the stochastic nature of
the protein interactions leads to slow equilibration of the system,
resulting in computational errors, and described strategies that Nature
employs to drive down entropy and correct errors. Finally, we pre-
sented two examples of real (although relatively simple) biological pro-
cesses, and the RAM programs they implement.

These results are a significant step in two avenues of research we
are pursuing, one technological, the other scientific. From a techno-
logical point of view, if biological systems are carrying out computing
via dynamic self-assembly, then these self-assembly processes are pro-
grammable. In principle, we should be able to turn this around, and
figure out how to program dynamic self-assembly, to build novel
structures and materials. We have made some progress in this direc-
tion. We have developed stochastic simulations of MTs and motor
proteins, which demonstrate how they can be programmed to build
nanostructures (Bouchard and Osbourn, submitted). We hope to
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report experimental verification of these simulations in the near fu-
ture. In addition, if we can solve the problem of manufacturing small
machines that have all the properties of protein dynamic self-assem-
bly, then we envision being able to program life-like systems that can
self-assemble, self-heal, and self-reconfigure, from totally non-biologi-
cal components.

From a scientific perspective, this RAM computing view of self-
assembly processes may enable us to identify larger, more complicated
algorithms biological systems are carrying out. What algorithms en-
able living systems to develop, persist, reproduce, and evolve? What
enabled higher levels of hierarchy, such as multi-cellular organisms
and colonies of organisms, to emerge? Indeed, is the ability to execute
algorithms central to the emergence of life itself?

We have already identified a few common themes. (1) Living sys-
tems represent quantities directly, using unary registers. This represen-
tation can be implemented physically in a wide variety of ways, and
the fundamental operations on these registers are easy to achieve
physically. (2) Living systems can implement the same software with
different hardware, and (3) can scale algorithms up by applying the
same algorithms at different levels of hierarchy (molecules, cells,
organisms). (4) Sequencing mechanisms wire together fundamental
operations in a modular, evolvable manner. (5) Decisions are often
made by races or competitions; the decision follows the winner - the
faster, stronger, or more numerous. (6) There are a few common
strategies for yielding robust outcomes from ‘“‘unreliable” stochastic
processes: focusing on function over form, cycling repeatedly until
success is achieved, and imposing a checkpoint or error-correction
mechanism to restore order.

As we continue to examine biological systems in the RAM com-
puting framework, we will continue to test and refine these themes,
and search for additional themes. Over time, being able to tease out
common algorithms from diverse and seemingly unrelated biophysical
processes may enable us to make progress toward some aspects of
ambitious questions regarding the algorithms of life.
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