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Abstract

We consider solutions for distributed multi-commodity flow problems, which are solved by multiple
agents operating in a cooperative but uncoordinated manner. We show first distributed solutions that
allow 1 + ε approximation and whose convergence time is essentially linear in the maximal path length,
and is independent of the number of commodities and the size of the graph.

Our algorithms use a very natural approximate steepest descent framework, combined with a block-
ing flow technique to speed up the convergence in distributed and parallel environment.

Previously known solutions that achieved comparable convergence time and approximation ratio
required exponential computational and space overhead per agent.

1 Introduction

1.1 Motivation

Resource allocation problem. The framework considered in this work is motivated by the decentralized
architecture of the Internet where different applications compete for the shared network resources in a co-
operative manner, e.g., by following TCP rules, but without explicit coordination with each other.

One of the fundamental unresolved problems on the Internet is the inability to reroute Internet traffic
around temporary traffic bottlenecks. This inability stems from the fact that current Internet routing is
essentially static and is not affected by congestion. Originally, Internet traffic has been congested-driven, and
different flows tried to re-route themselves along least congested paths [MFR78]. However, the following
phenomenon, referred as “tragedy of the commons” has been detected by the practitioners [MRR80]. Since
each flow attempts to route over the least congested path and since congestion on the path grows with
traffic, the least congested path routing is inherently unstable. Thus, trying to route on least congested path
leads to unpredictable oscillations and wastes network resources. In order to avoid this problem, Internet
routing protocols since the seventies [MRR80] avoid dynamic (congestion caused) re-routing altogether
[LAJ98, KZ98, Rex05, KR04], and thus operate over static and potentially significantly sub-optimal paths.

The current paper provides first solution to the problem of unstable rerouting, by presenting a distributed
rerouting framework that is efficient in terms of its convergence times and does not suffer from exponential
overhead of previously known distributed rerouting methods [GY02, LN93, BBR97, You01].

Getting somewhat more technical, there are two “bandwidth management” issues here. First issue is the
pure admission control: the decision must be made which fraction of a flow by a commodity is admitted (rest
is rejected), assuming that routing is fixed. Second issue, which is the pure routing problem, is to decide

∗Johns Hopkins University. email: baruch@cs.jhu.edu. Partially supported by NSF grants CCF 0515080, ANIR-0240551, and
CCR-0311795.

1



how to route the admitted flows. Combining these to issues together means simultaneous optimization of
routing and admission decisions.

Informally, network bandwidth management problems can be modeled as multi-commodity flow prob-
lems in a directed capacitated graph, with a collection of commodities, each characterized by the following:
source (where the flow is originated), sink (where the flow ends up), benefit (the monetary value of this flow;
must be positive), and demand (the priority of this flow, must be positive). The normalized load of each edge
is the ratio between flow on this edges and its capacity. The flow for each commodity must satisfy Kirkhoff
laws of flow conservation at intermediate points (except for source and destination). The collection of all
the flows must satisfy capacity constraints, namely total flow on each edge cannot exceed its capacity.

There are a number of variations of classical multi-commodity flow and Linear Programming problems
that describe such optimization problems.

Maximum concurrent flow (MCF): maximizes the minimal ratio between the flow of a commodity and
its demand (disregarding their benefit), i.e., minimized maximum edge load while meeting all flow demand.

Maximum-benefit flow (MBF): maximizes the total benefit of all the flows (disregarding their demand);
it simultaneously optimizes routing and admission control to maximize overall network throughput.

Positive Linear Programming (LP): (also called pure packing problem) corresponds to solving pure ad-
mission control issue. Polynomial representations of MCF and MBF problems involve negative coefficients,
e.g., to capture Kirkhoff’s flow preservation laws and thus do not fit into this framework.

One can introduce separate variables for flows of each commodity on each path, rather than for edges,
and thus represent multi-commodity flows as positive LP’s. This formulation allows solving MCF and
MBF problems in this framework. The computational overhead of such representation is linear in the
number of paths and super-polynomial (in the worst case, exponential) in the size of the network, even
for relatively short (logarithmic) length paths. In a distributed setting, positive LP has been widely studied
recently [GY02, LN93, BBR97, You01] and can be considered solved in a satisfactory manner. The resulting
distributed solutions for flow problems suffer from exponential representation issue. In this paper, we focus
on solutions using polynomial representations that do not require exponential overhead.

1.2 Distributed Computation Model

We assume a collection of agents, each agent representing a different flow, interacting with a shared “bill-
board” in a synchronous manner. The billboard maintains the current state of total network flows, namely
keeps record of total flow on each edge of the network, without distinguishing which commodity is this
flow coming from. At each time step, each agent may “read” the values of flow on various network edges
from this billboard, perform local computation, and then “write” its own flows on this billboard, namely
re-routing its flow based on the current state of the network flows.

At each time step, each agent decides where to send its flow (this is the routing decision) and how much
of its flow will be sent overall (this is the admission control decision). These decisions are made, at each
time step, by all the agents in parallel and without coordination with other agents, except for the fact that
the agents have access to the common clock, they see the congestion of the network edges being used by the
flows of their commodity, and they all execute the same program.

In order to make our model more realistic, we make additional restriction on the use of the billboard,
namely that an agent responsible for a certain commodity can only read the part of the billboard which is
currently used by its flow. The reason for this restriction is that in reality, the flow over a certain path can
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measure congestion over the edges used in this path, but cannot see congestion over the other edges used by
other flows, since the flows are uncoordinated.

For example, if we consider a set of clients, each client being able to send a job to one of the “near-by”
servers, then the problem becomes load-balancing in a bi-partite graph [ANR92], where each client can see
the load of near-by servers and decide how to re-balance its flow based on this limited feedback.

Also, since this model does not allow any explicit communication between agents, it is impossible to
solve the problem by a centralized algorithm as in, say, [PST94], [GK98]. In fact it is not even a-priori
obvious that approximately optimal solutions are even computable.

Complexity measures. As the time goes on, the quality of the flows should improve in that the flow
decisions should approach the optimum flow. The approximation ratio of the flow is the ratio between
the performance of this flow and optimal performance, and the approximation difference is the difference
between these values.

The distributed convergence time (for certain approximation ratio 1+ε ) is the number of parallel rounds
it takes for the distributed algorithms decisions to start meeting such bounds. The computational complexity
of each agent is the local computational overhead imposed by local program of each agent, in terms of
number of local computational steps.

The distributed convergence time is an information-theoretic measure that is independent of the model
of computation, while computational complexity is model-dependent and thus is not particularly robust. It
is thus reasonable to draw distinction between polynomial time and super-polynomial time in this model.

1.3 Our results

We will denote by τ(MCF ) and τ(MBF ) the distributed convergence times of computation of maximum
concurrent flow and maximum-benefit flow, and we denote by µ(MCF ) and µ(MBF ) the total amount of
computation by each agent. Denote by L the length of maximal path length in a graph, e.g., L = 1 in a
bipartite case (L is a constant in many important applications), let k denote the number of commodities, and
let m,n denote the number of edges and nodes in the network. (Note that L < n ≤ m and in many practical
situations, L is a constant.) Our main result is in Thm 1.1 and Figure 1 compares it with existing results.

Theorem 1.1 (Main) The costs of our distributed 1 + ε approximation to MCF and MBF problems are

τ(MCF ) ≤ L

ε6
log3 m log

k

ε
= Õ (L) (1)

µ(MCF ) = O

(
L ·m2

ε6
log3 m log

k

ε

)
= Õ

(
m2L

)
(2)

τ(MBF ) ≤ L

ε4
log2 m log

k

ε
= Õ (L) (3)

µ(MBF ) = O

(
L ·m2

ε4
log2 m log

k

ε

)
= Õ

(
m2L

)
(4)

1.4 Comparison with existing work

Distributed Positive LP results. The only existing parallel methods with comparable convergence times
and approximation ratios apply only to positive LP, namely pure “packing” or pure “covering” or a combi-
nation of pure packing and covering. These results were achieved by Luby and Nisan [LN93], Awerbuch
and Azar [AA94], Bartal-Byers-Raz [BBR97] and Young [You01]. As mentioned before, multi-commodity
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Setting and Reference Approximation Distributed Time Sequential work

Distributed/Online [AA94] O(log n) Õ (L) Õ
(
nL

)

Distributed [LN93, BBR97, You01] 1 + ε Õ (L) Õ
(
nL

)

Distributed This paper 1 + ε Õ (L) Õ
(
m2 · L)

Figure 1: Comparison of our results with existing work (Õ (·) absorbs polylog factors).

flow problem do not fit naturally into this framework. That is, in order to fit this framework, and exponen-
tial computational overhead is needed with explicit representation of flow paths. Assuming flow paths with
length bounded by L, the resulting algorithms can converge in Õ (L) rounds at the expense of exponential
computational overhead, τ(MCF ) = Ω(nL) and τ(MBF ) = Ω(nL).

Online/Distributed positive LP. A combined distributed/online framework for positive LP which is some-
what more challenging than the framework in our paper has been previously proposed by Awerbuch and Azar
[AA94]. In this model, we need to deal with distributed resource allocation problems in an online manner.
Namely, the flows arrive in an online manner, and at each point in time many flows may arrive. We need
to deal not only with the concurrency issue, but also with the issue of prematurely allocating bandwidth on
some bottleneck edges, that may be extremely valuable in the future. In such model, Ω(log n) lower bound
applies on the quality of approximation. This lower bound is met by the algorithm in [AA94], albeit at the
expense of exponential blow-up in computational overhead as in [LN93, BBR97, You01].

1.5 Intuitive explanation of the algorithm

The basic idea of our algorithm is properly exploiting the concepts of Lagrangian relaxation and steepest
descent. The idea of Lagrangian relaxation is to introduce an exponential potential function, that sums up
exponents of congestion over all network edges. Suppose that initially all the flows are zero and we increase
the flows slowly to meet the demand. While are are doing this the potential function is growing and our goal
is to keep potential function under control.

Alternatively (for MCF problem) we can introduce a fictitious edge with low capacity connecting source
and sink for each commodity, and send initially all the flow for this commodity over this fictitious edge.
In the future, we will re-route the flow from such a fictitious edge to real network edges, thus creating
impression that demand routed through the real network is only growing.

For the MBF problem, introduce a fictitious commodity with almost zero benefit and a fictitious edge
between its source and sink, and route all benefit that needs to be accrued through this edge, using only
fictitious commodity.

Notice that we can satisfy the demand or benefit requirements while keeping the potential function
increase to be at most polynomially higher than the potential increase using optimal flows, then this is
equivalent to achieving 1 + ε approximation.

In order to achieve this goal we proceed in a steepest descent manner: we reroute portion of the flow
from expensive path to the cheapest path, just like in [PST94] or [GK98]. The problem is how to efficiently
implement this in a distributed concurrent environment. The difficulty here is quite similar to what has
been reported, for example in [AA94] and to some extent in [EDM05, FRV06], namely concurrent access to
attempt to re-route on a shortest path causes this path to stop being shortest path, causing to unpredictable
oscillations mentioned above.

We suggest a new algorithmic technique to handle such oscillations, which achieves the same effect as
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in exponential overhead approaches of Luby and Nisan [LN93], Bartal et al. [BBR97] and Young [You01]
without exponential overhead.

Essentially, this involves extracting the sufficient conditions for approximate steepest descent framework
to be efficient, and finding a polynomial algorithm that meets these conditions. Specifically, the sufficient
condition is that the flow of each commodity on each edge is increasing at most multiplicatively (or by a
polynomially small additive amount). The efficient algorithm that we propose finds maximal collection of
such flow augmentations using blocking flow subroutine.

1.6 Outline of the rest of the paper

The technical contents of the paper consists of the following. We start with description of the basic steepest
descent framework for MCF problem in Section 2.1 and the distributed MCF algorithm in section 2.2. We
present the corresponding steepest descent framework for MBF problem in Section 3.1 and the distributed
MBF algorithm in section 3.2.

2 Maximum Concurrent Multicommodity Flow Problem

The maximum concurrent multicommodity flow problem (MCF) is defined as follows. Let G = (V, E) be
a directed graph with edge-capacities ce ≥ 0. There are k commodities i = 1, . . . , k. The commodity i is
associated with a source si ∈ V , a sink ti ∈ V , and flow demand di ≥ 0. The objective is to route, for each
commodity i, a flow of value di from si to ti possibly split along several paths such that the maximum ratio
of the total flow routed along an edge to its capacity is minimized. Let f i

e be the flow of commodity i routed
along edge e. The edge e is said to have a congestion of conge = (

∑
i f

i
e)/ce. Thus we want to minimize

maxe conge.
Here we describe an efficient distributed algorithm that computes a (1 + ε)-approximate solution to the

above problem for any given ε > 0.

2.1 An approximate steepest descent framework for MCF algorithms

Our algorithm is motivated by the algorithm of Garg and Könemann [GK98] and we begin by describing a
framework for MCF algorithms inspired by their algorithm. Let us assume for simplicity that the demands
are scaled so that the optimum value of maxe conge = 1. The algorithm will employ approximate steepest
descent in order to minimize the convex potential

Φ =
∑
e

(
m1/ε

)conge

where m is the number of edges. Note that an mO(1)-approximation of Φ yields a (1+O(ε))-approximation
for maxe conge. This follows from a simple fact that

max
e

conge ≤
ε

log m
log Φ ≤ ε

log m
log(mO(1)Φ∗) ≤ O(ε)+

ε

log m
log(m · (m1/ε)maxe cong∗e ) ≤ 1+O(ε).

Here Φ∗ and cong∗e denote the corresponding values under the optimum routing. We show that the algorithm
described here indeed computes an mO(1)-approximation of the minimum Φ.

Initially all the flows f i
e are zero. The algorithm goes in T = (log m)/ε2 phases and routes a flow of

value di/T for each commodity i in each phase, thereby constructing a feasible solution in the end. A phase,
in turn, is divided into several steps. In each step, each commodity augments its flow along certain paths
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simultaneously. Let {f i
e} be the current flow values. Suppose commodity i augments a flow of ∆f i

e along
an edge e. The overall increase in Φ due to this augmentation along e is at most

∑

i

∆f i
e ·

log m

εce

(
m1/ε

)cong′e (5)

where cong′e is the congestion on edge e after this step. This follows from the inequality eδ − 1 ≤ δeδ

where δ = (
∑

i ∆f i
e log m)/(εce). Let us associate a length le = 1

ce
(m1/ε)conge with an edge e. In order

to minimize the increase in Φ, the algorithm augments the flow of commodity i along (1 + ε) approximate
shortest paths from si to ti under this length function. The amount of flow augmented is subject to the
step-size constraint that for any edge e, its length increases by at most an ε fraction. That is, the total flow
∆fe =

∑
i ∆f i

e sent through e in a step should satisfy le(∆fe log m)/(εce) ≤ ε · le, i.e., ∆fe ≤ ε2ce/ log m.
In this framework, we intentionally do not specify a particular way of augmenting the flow. We rather prove
that any augmentation that satisfies the routing-along-short-paths and the step-size constraints yields a good
approximation.

Our assumption that the optimum value of maxe conge = 1 implies that the optimum value of Φ is
Φ∗ ≥ m1/ε. The following lemma proves that at the end of the algorithm, the value of Φ is an mO(1)-
approximation of the optimum, thereby establishing that the algorithm computes an (1 + O(ε)) approxima-
tion to the maximum congestion. Let Φ(t) denote the value of the potential Φ after phase t.

Lemma 2.1 Φ(T ) ≤ mO(1) ·m1/ε.

Proof. Fix a phase t and let us estimate the change in potential, Φ(t) − Φ(t − 1), in this phase. To
this end, we first analyze the change in Φ in a single step in this phase. Let l(1) and l(2) be the length
functions in the beginning and at the end of a step respectively. The increase in Φ in this step is at most
log m

ε

∑
i ∆fi · (1 + ε)l(2)

i where ∆fi is the flow sent for commodity i in this step. This follows from the
expression (5). The factor of (1 + ε) is due to the fact that the flow is routed along (1 + ε) approximate
shortest paths which have length at most (1 + ε)l(2)

i . Since the length function l(t) at the end of the this
phase is not less than l(2) and since we route a total flow of ε2di/ log m for each commodity i in each phase,
we have,

Φ(t)− Φ(t− 1) ≤ log m

ε

∑

i

ε2di

log m
· (1 + ε)li(t) = ε(1 + ε)

∑

i

dili(t). (6)

Claim 2.2 Φ(t) ≥ ∑
i dili(t).

Proof. We prove this in two different ways. The first proof is based on linear programming duality. The
LP dual of the MCF problem can be viewed as an assignment of the lengths le ≥ 0 to the edges such that
(
∑

e cele)/(
∑

i dili) is minimized where li is the shortest path length from si to ti under the length function
l. Since the optimum value of maxe conge is 1, it follows from weak duality that for any length function l,
we have (

∑
e cele)/(

∑
i dili) ≥ 1. Since Φ(t) =

∑
e cele(t), we conclude Φ(t) ≥ ∑

i dili(t).
Our second proof unfolds the LP duality and is self contained. Let {gi

e} be the flow in the optimum
solution to the MCF problem. Thus we have

∑
i g

i
e ≤ ce for each edge e. Furthermore since the solution

{gi
e} routes di units of flow from si to ti and since li(t) is the shortest path length from si to ti, we have∑
i

∑
e gi

ele(t) ≥
∑

i dili(t). Thus we have

Φ(t) =
∑
e

cele(t) ≥
∑

i

∑
e

gi
ele(t) ≥

∑

i

dili(t).

ut
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Combining the above claim with inequality (6), we get

Φ(t) ≤ Φ(t− 1)
1− ε(1 + ε)

.

Since Φ(0) = m and T = (log m)/ε2, we have Φ(T ) ≤ m(1 + O(ε))(log m)/ε2 ≤ mO(1) ·m1/ε as desired.
ut

2.2 Our distributed MCF algorithm

We are now ready to present our distributed algorithm which turns out to be an instance of the above frame-
work. We first contrast it with Garg-Könemann algorithm. Garg-Könemann algorithm is essentially sequen-
tial. In each phase of their algorithm, flows of different commodities are routed one after another along short
paths. A lot of co-ordination is therefore required between the agents associated with different commodities.
A single commodity is routed in any step, and hence it is easy to ensure the step-size constraint. They route
the flows along shortest paths and saturate the minimum capacity edge on this path.

We, on the other hand, are seeking for a distributed algorithm where there is a minimal co-ordination
between different agents. Only global information accessible to the agents is a common clock and the
congestion on the edges accessible by them. We would like to route the flows of all commodities in parallel.
We therefore use a special way of ensuring the step-size constraint. We initially route a tiny amount of flow
of all commodities on all edges and later increase this flow multiplicatively. The initial flow may not even
satisfy the flow conservation constraints. However the total capacity used in this initial pre-flow is ε fraction
of the edge-capacities, thus this affects the optimality only to an extent ε. Furthermore, we can ensure that
this initial flow is not actually routed and used only as an accounting tool.

Since the algorithm is an instance of the framework described in the previous section, we need to specify
the details of how a phase and a step is implemented. See Figure 2. The algorithm has T = (log m)/ε2

phases and each phase has Tp = O(L(log2 m log(k/ε))/ε4) steps, where L denotes the maximum number
of edges on any path between a source-sink pair. Let f i

e be the flow of commodity i on edge e at some stage
in the algorithm. In the following step, we allow the additional amount, ∆f i

e, of commodity i to be routed
on this edge, to be at most ε2f i

e/ log m. Since we maintain the feasibility invariant
∑

i f
i
e ≤ ce, the total

additional flow allowed is at most ε2ce/ log m. Thus the step-size constraints are satisfied. Unlike Garg-
Könemann, however, we now augment flows for each commodity by computing blocking flows under these
step-size constraints and the constraint that the flow needs to be routed along short paths. Due to this, we
end up saturating at least one edge on each (approximately) shortest path. Using this, we are able to show
that we need only Tp = O(L · polylog(mk)) steps in order to send ε2/ log m fraction of the entire demand.

Here again we assume that the optimum value of maxe conge = 1. Below in Lemma 2.3, we prove that
the above algorithm indeed routes di/T demand of each commodity i in each phase. This, in turn, would
imply that since the algorithm adheres to the constraints in the above framework, it computes a (1 + O(ε))
approximation at the end of T = (log m)/ε2 phases.

Lemma 2.3 The number of steps, Tp = O(L(log2 m log(k/ε))/ε4), in a phase is sufficient to route di/T
flow for each commodity i.

Proof. Imagine that a phase is run until each commodity i has sent its desired flow. We argue that this
phase needs at most Tp steps. Consider a commodity i. Each blocking flow (except perhaps the last one)
for this commodity saturates at least one edge on every (1 + ε) shortest path. The total flow f i

e of this
commodity on such a saturated edge increases by a (1 + ε2/ log m) factor. Since the initial flow on this
edge was εce/k and it never exceeds (1 + O(ε))ce, the maximum number of times an edge can be saturated
is O((log m log(k/ε))/ε2). Because any path has at most L edges, after O(L(log m log(k/ε))/ε2) steps,
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• Initialize: Set f i
e ← εce/k for each edge e and commodity i.

• For T = O((log m)/ε2) phases do:

Phase: For Tp = O(L(log2 m log(k/ε))/ε4) steps do:

Step: Let {f i
e} be the current flow values. For each commodity i such that we have not yet routed

di/T flow between its source-sink pair in this phase do in parallel:

1. Define the capacities ci
e = ε2f i

e/ log m.

2. Compute a blocking flow under capacities ci
e from si to ti that routes flows along (1 + ε)

approximate shortest paths under the current length function, that is, no (1 + ε) approximate
shortest path has a residual capacity.

3. Route the above flow subject to the constraint that the flow of commodity i routed in this
phase does not exceed di/T .

Figure 2: A distributed algorithm for the MCF problem

the shortest-path length increases by a factor of at least (1 + ε). Now from Lemma 2.1, in the entire
course of the algorithm, the shortest path length increases by a factor of at most mO(1)+1/ε, therefore after
O(L(log2 m log(k/ε))/ε4) blocking flow computations, the commodity i must have sent at least di/T flow.

ut
Lemma 2.4 The algorithm can be implemented in O(L(log3 m log(k/ε))/ε6 · Tbf ) parallel running time
(with O(k) processors) and O(Lk(log2 m log(k/ε))/ε4 ·Tbf ) sequential running time, where Tbf = Õ(m2)
denotes the time needed for a single commodity blocking flow computation along (1 + ε) approximate
shortest paths.

Proof. The parallel running time follows directly from the bounds on the number of phases and number
of steps in each phase. Each step, recall, involves computing O(k) blocking flows, one for each of the k
commodities.

For the sequential time, we argue that each of the k commodities needs at most O(L(log2 m log(k/ε))/ε4)
blocking flow computations. This, in turn, follows from the argument in the proof of Lemma 2.3 that after
O(L(log m log(k/ε))/ε2) steps, the shortest path length increases by a factor of at least (1 + ε). Now note
that since the length of any edge increases by a factor of at most mO(1)+1/ε, the shortest path length increases
by at most the same factor. Therefore, the total number of blocking flow computations for a commodity is
at most O(L(log2 m log(k/ε))/ε4).

The desired blocking flow can be computed in Õ(m2) time simply by doing O(m) successive shortest
path computations and saturating at least one edge after each computation. ut

3 Maximum Throughput Multicommodity Flow Problem

The maximum throughput multicommodity flow problem (MBF) is defined as follows. Similar to that in the
MCF problem, let G = (V,E) be a directed graph with edge-capacities ce ≥ 0. There are k commodities
i = 1, . . . , k. This time, the commodity i is associated with a source si ∈ V , a sink ti ∈ V , and a per-
unit-flow benefit bi ≥ 0. The objective is to route a flow fi from si to ti possibly split along several paths
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such that the entire flow can be routed without violating the capacity constraints, i.e., the total flow routed
through edge e is at most ce, and the total benefit

∑
i bifi is maximized.

Here we describe a distributed algorithm that achieves a (1 + ε) approximation.

3.1 An approximate steepest descent framework for MBF algorithms

We now describe a framework for MBF problem that is motivated by the algorithms of Garg and Könemann [GK98]
and Fleischer [Fle00] and is similar to the one for the MCF problem. We again consider the same convex
potential

Φ =
∑
e

(
m1/ε

)conge

where conge =
∑

i f
i
e/ce is the congestion on edge e due to the flows f i

e of commodities i on edge e. As
before, we associate a length le = 1

ce
(m1/ε)conge with an edge e.

Initially all the flows f i
e are zero. The algorithm goes in several steps. In each step, each commodity

augments its flow along certain paths simultaneously. These augmentations are subject to two constraints:

1. (routing-along-beneficial-paths) the commodity i is allowed to augment its flow along a path of length
l under the current length function only if l/bi is at most (1 + ε)minj lj/bj where lj is the shortest
path length from sj to tj under the current length function,

2. (step-size) the total flow ∆fe of all commodities together sent along e in a step should be at most
ε2ce/ log m.

The algorithm stops when the potential Φ crosses m1/ε/eε for the first time. Here, again, we prove that no
matter how the commodities augment their flows, as long as they satisfy the above routing-along-beneficial-
paths and step-size constraints, the algorithm yields a good approximation.

Lemma 3.1 The algorithm computes a solution that satisfies maxe conge ≤ 1 and B ≥ B∗(1 − O(ε))
where B and B∗ are the benefits accrued by our and the optimum algorithm respectively.

Proof. Note that the length of any edge increases by a factor of at most eε in any step. Therefore the final
potential Φ is at most m1/ε. Therefore in the end,

max
e

conge ≤
ε

log m
log m1/ε ≤ 1.

Now fix a step t and observe that the change in potential, Φ(t)− Φ(t− 1), in this step is at most

log m

ε
(1 + ε)

∑

i

∆f ili(t)

where ∆f i denotes the flow of commodity i routed in this step, l(t) denotes the length function at the end of
step t, and li(t) denotes the shortest path length from si to ti under this length function. This follows from
an argument similar to the one in Lemma 2.1. Let α(t) = mini li(t)/bi be the minimum cost to benefit ratio
at the end of step t. Since the flow was subject to the routing-along-beneficial-paths constraint, we have

∆f ili(t) ≤ (1 + ε)2α(t) · bi∆f i.

One factor of (1 + ε) is due to the fact that we route flows along (1 + ε) approximate beneficial paths. The
second factor of (1 + ε) is due to the fact that the lengths le(t) are at most (1 + ε) times the lengths during
this step. The above inequality, in turn, implies that

∑

i

∆f ili(t) ≤ (1 + ε)2α(t) ·B(t) (7)

where B(t) denotes the total benefit accrued by the algorithm in step t.
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Claim 3.2 Φ(t)/α(t) ≥ B∗.

Proof. We prove this in two different ways. The first proof is based on LP duality. The LP dual of the MBF
problem can be viewed as an assignment of the lengths le ≥ 0 to the edges such that (

∑
e cele)/(mini li/bi)

is minimized where li denotes the shortest path length from si to ti under the length function l. Since the op-
timum benefit is B∗, it follows from weak duality that for any length function l, we have (

∑
e cele)/(mini li/bi) ≥

B∗. Applying this observation to the length function l(t) proves the claim.
Our second proof unfolds the LP duality and is self contained. Let {gi

e} be the flow in the optimum
solution to the MBF problem. Thus this flow accrues a total benefit of B∗ and satisfies

∑
i g

i
e ≤ ce for each

edge e. Now we have

Φ(t) =
∑
e

cele(t) ≥
∑

i

∑
e

gi
ele(t) ≥ B∗ ·min

i
li(t)/bi = B∗ · α(t).

The second inequality follows from the fact that the flow gi
e is not more beneficial than the most beneficial

paths. ut

Combining the above claim with inequality (7) and relating it to the change in the potential, we conclude

Φ(t)− Φ(t− 1)
Φ(t)

≤ (1 + ε)3
log m

ε
· B(t)

B∗ .

Since the left-hand-side is at most eε − 1 ≈ ε, using the approximation (1 − ε) log(Φ(t)/Φ(t − 1)) ≤
(Φ(t)− Φ(t− 1))/Φ(t), we get

(1− ε)
ε

log m
log

Φ(t)
Φ(t− 1)

≤ (1 + ε)3
B(t)
B∗ .

Since the initial potential is Φ(0) = m, the final potential is Φ(T ) ≤ m1/ε, by telescoping sum we conclude
that B ≥ B∗(1−O(ε)). ut

3.2 Our distributed MBF algorithm

We now describe our distributed algorithm for the MBF problem. During the algorithm we maintain a value
α that satisfies α ≤ mini li/bi < α(1 + ε) where li is the shortest path length from si to ti under the current
length function. Initially we set α = 1/maxi bi and increase it by a factor of (1 + ε) as soon as there is no
commodity i such that li/bi < α(1 + ε). We call the duration corresponding to a fixed value of α a phase.
Since the length of any edge increases by a factor of at most m1/ε, the value of α also increases by at most
the same factor during the course of the algorithm. Thus the total number of phases is O((log m)/ε2). This
idea of keeping track of the current length-to-benefit ratio was first used by Fleischer [Fle00].

We now describe the initialization and how to implement a phase of the algorithm. See Figure 3. We
initialize the flows as before to occupy an ε fraction of the edge-capacities. This affects the feasibility only
to an extent ε. Also, as before, we can think of this initial flow only as an accounting tool. Each of the
O((log m)/ε2) phases is further divided into Tp = O(L(log m log(k/ε))/ε2) steps. In each step, each
commodity i that has beneficial paths, i.e., paths of length l such that l/bi ≤ α(1 + ε), routes a blocking
flow along approximate shortest paths. In the end of a phase, we increase the value of α by (1 + ε). In
Lemma 3.3, we prove that Tp steps are sufficient to increase the value of mini li/bi by a factor of at least
(1 + ε), thus we maintain our α invariant correctly. Given this, it is then clear from Lemma 3.1, that the
above algorithm computes an (1 + O(ε)) approximate solution to the MBF problem.

Lemma 3.3 In any phase, after at most Tp = O(L(log m log(k/ε))/ε2) steps, the value of mini li/bi in-
creases by at least (1 + ε).
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• Initialize: Set α ← 1/maxi bi. Set f i
e ← εce/k for each edge e and commodity i.

• For T = O((log m)/ε2) phases do:

Phase: For Tp = O(L(log m log(k/ε))/ε2) steps do:

Step: Let {f i
e} be the current flow values. For each commodity i such that li/bi < α(1 + ε) do in

parallel:

1. Define the capacities ci
e = ε2f i

e/ log m.

2. Route a blocking flow under capacities ci
e from si to ti along (1 + ε) approximate shortest

paths under the current length function, that is, no (1 + ε) approximate shortest path has a
residual capacity.

End of phase: Set α ← α(1 + ε).

Figure 3: A distributed algorithm for the MBF problem

Proof. Imagine that a phase is run till the value of mini li/bi increases by a factor of (1 + ε). We prove
that it takes at most Tp steps. Consider a commodity. Each blocking flow saturates at least one edge on any
(1 + ε) approximate shortest path. Every time an edge saturates, the flow of that commodity on it increases
by a factor of (1 + ε2/ log m). Since the flow of any commodity on any edge e goes from εce/k to at most
ce, an edge can be saturated at most O((log m log(k/ε))/ε2) times. Since there are at most L edges on any
paths, after O(L(log m log(k/ε))/ε2) steps, the length of the shortest path for this commodity increases by
a factor of at least (1 + ε). Thus the proof is complete. ut

The following lemma is now evident.

Lemma 3.4 The algorithm has at most O(L(log2 m log(k/ε))/ε4) steps where each step can be imple-
mented in Tbf = Õ(m2) parallel running time (with O(k) processors) where Tbf denotes the time needed
for a single commodity blocking flow computation along (1 + ε) approximate shortest paths.

4 Conclusions and Open Questions

One obvious open question is eliminating the dependency on L and get a poly-logarithmic convergence
time for any value of L. Another open question is extending other results in [GK98], e.g., min-cost flows to
efficient distributed solutions. Also, the sequential time bounds that we provide in this paper are surely not
very tight; a better bound on the cost blocking flow should lead to reducing the computational overhead.
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