Image-Based Navigation for Functional Endoscopic Sinus Surgery Using Structure From Motion

Simon Leonard, Austin Reiter, Ayushi Sinha, Masaru Ishii, Russell H. Taylor and Gregory D. Hager

The Johns Hopkins University
Introduction

• Functional Endoscopic Sinus Surgery (FESS) is a challenging procedure for otolaryngologists
• Over 250,000 FESS are performed annually in the USA
• Use to treat common conditions such as chronic sinusitis
• Surgeons remove several layers of cartilage and tissues that are within millimeters of critical anatomical structures (nerves, arteries, ducts)
Motivation

• Complications of FESS
 – Major: 0.31-0.47%
 – Minor: 1.37-5.6%

• Safety and efficiency are improved by using navigation systems

• State of the art navigation systems have reported accuracy greater than 1 mm which is large considering the scale of the sinus cavities

Overlay of middle turbinate (CT) on video images
Previous Work

• Previous Video-CT registration used pairs of cadaver images
 – Using needles as fiducials
 – Using image pairs
 – Reprojection distance error of 1.28 mm (1.82 mm for tracker)

Reprojection error between tracker based and image-based Methods
MIrota IEEE TMI 2013
Objectives

1. Test video-CT registration with in-vivo data
 - Test registration for erectile tissues
 - Less “feature rich” images

2. Use a greater set of video images for registration

3. Manageable computation time

Sample video sequence (1 second)
Method

1. Use a set of images to compute structure from motion (SfM)

2. Scale structure and motion to CT using the magnitude of tracking trajectory
 - Magnetic tracker is used to estimate the scale of the motion

3. Register the 3D structure to CT using trimmed-ICP (TrilCP) with scale
 - Initial guess must be provided
SfM
Hierarchical Multi-Affine Matching

- SfM is computed from a set of matched image-features (SIFT or SURF)
- Endoscope images and motion are challenging for conventional matching algorithms
- HMA matches increases quantity and quality of matches
 - SURF are extracted from a pool of GPU
 - Initial SURF matches using brute force algorithm
 - HMA matches computed using a pool of CPUs
SfM
Sparse Bundle Adjustment

• SfM with SBA is computed from HMA matches
• The structure and motion are scaled according to the magnitude of the motion as measured from the magnetic tracker
• One second of video (~30 frames) yields between 800 and 1000 points
Trimmed Iterative Closest Point with Scale

- The scaled structure is registered to the mesh of the CT scan
- Use 70% of inliers to register structure points to CT
- Allow to scale structure to compensate for tracker inaccuracy
- Initial guess must be provided
Erectile/Non-Erectile tissues

- Account for erectile/non-erectile tissues
 - Congestion cause some tissues to swell
 - Discrepancy if CT was obtained weeks before video

Decongested view (video) of the middle turbinate

Congested view (CT) of the middle turbinate
Results

• Video data was captured from JHOC
 – ~90 seconds per patient
 – Divided in one second video sequence (~30 frames)
• Five sequences with erectile tissues and five sequence with non-erectile tissues
 – Non-erectile tissues TriICP residual: 0.91 mm (0.2 mm)
 – Erectile tissues TriICP residual: 1.21 mm (0.3 mm)
• Average computation time
 – 10.2 seconds (1.3) for 30 frames
Results

- No ground truth available
- Measure reprojection error using overlaying of anatomical structure (middle turbinate)
 \[\frac{\sum (I_A \oplus I_B)}{\sum I_B} \]
- 86% mean reprojection accuracy (std 3%)
 - Middle turbinate is surrounded by erectile tissues
Conclusion and Future Work

• FESS is commonly used for treatments of chronic sinus diseases
• Current navigation systems have limited accuracy
• Our research introduces a video-CT registration with sub-millimeter accuracy for non-erectile tissues with in-vivo data
• Proposed video-CT registration enables overlay of CT structures (visible or occluded) on video data
• Computation time is comparable to state of the art navigation systems (inserting and removing markers)
• Future work includes analysis of robustness to initial registration guess
Thank you!

Questions?

Acknowledgement: This work is funded by NIH R01-EB015530: Enhanced Navigation for Endoscopic Sinus Surgery through Video Analysis.