Simultaneous segmentation and correspondence improvement using statistical modes

Ayushi Sinhaa, Austin Reitera, Simon Leonarda, Masaru Ishiib, Gregory D. Hagera, Russell H. Taylora

aDept. of Computer Science, the Johns Hopkins University
bDept. of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions
Functional Endoscopic Sinus Surgery

• What is it?
 • Minimally invasive procedure
 • Chronic sinusitis, nasal polyps, etc.

• 600,000 procedures in the US per year\[1\]
• 5-7% result in minor complications\[2\]
• ~1% result in major complications\[2\]
Sinuses & Nasal Airway: Complex structures with thin boundaries

Fovea ethmoidalis: separates the ethmoid cells from the anterior cranial fossa
Thickness: ~0.5 mm[3]

Boundary between the sinuses and the orbit
Thickness: ~0.91 mm[4]

Enhanced Endoscopic Navigation

Pre-op CT → Labeled Template → Deformable Registration → Intra-op video

Registration (ICP\(^{[13]}\)/IMLP\(^{[14]}\)/IMLOP\(^{[15]}\)/V-IMLOP\(^{[16]}\)/etc.)

Structure from motion

References:

Segmentation & Statistics

Set of CTs

Statistics
Our paper: Better segmentation & statistics

Segmentation

Before

After

Statistics

Left Maxillary Sinus
Leave One Out Analysis

Mesh Quality

Before

After
Statistical Shape Model (SSM)\(^5\)

\[
\begin{align*}
\bar{V} &= \frac{1}{n_s} \sum_{i=1}^{n_s} V_i \\
\Sigma &= \frac{1}{n_s} \sum_{i=1}^{n_s} (V_i - \bar{V})^T (V_i - \bar{V}) \\
\Sigma &= \begin{bmatrix} m_1 & \cdots & m_{n_s} \end{bmatrix} \begin{bmatrix} \lambda_1 & \vdots & \lambda_{n_s} \end{bmatrix} \begin{bmatrix} m_1 & \cdots & m_{n_s} \end{bmatrix}^T
\end{align*}
\]

Correspondence Improvement[8]

Project shape onto the modes
\[
b_i = m_i^T (V_i - \bar{V})
\]

Compute estimate shape
\[
V = \bar{V} + \sum_{i=1}^{n_s} b_i m_i
\]

Move vertices of original shape along the surface toward the corresponding vertex on estimated shape[8]

Assumption

- High accuracy segmentations
- Segmentation improvement
- E.g.: Using gradient vector flow (GVF) snakes[6][7]
 - Use gradient in corresponding CT image
 - Move mesh vertices toward structure boundaries
- Correspondences between shapes
- Lost during segmentation improvement

Simultaneous segmentation and correspondence improvement
Constrained segmentation improvement

- Using GVF
 - Move vertices toward large gradients in image to obtain new surface, ϕ
 - Estimate ϕ using pre-existing SSM
 - Slide vertices on ϕ along the surface toward corresponding vertices on estimated shape
Simultaneous segmentation and correspondence improvement

Deformed Meshes → PCA → SSM → Constrained GVF → Improved Segmentation → Corr Up

$P = 5$

$Q = 3$

5 iterations
Results

From 52 publicly available CTs [9][10][11][12]

Results: Segmentation

Red contour: Segmentation via label transfer using deformable registration

Blue contour: Hand-labeled gold standard

Green contour: Improved segmentation using our method
Results: Segmentation

Segmentation errors compared against hand-segmented gold standard computed using the Hausdorff distance metric.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean Error ± Std. Dev. (mm)</th>
<th>Max Error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deformable registration</td>
<td>0.3327 ± 0.3147</td>
<td>2.338</td>
</tr>
<tr>
<td>GVF</td>
<td>0.1135 ± 0.1316</td>
<td>1.1548</td>
</tr>
<tr>
<td>GVF + SSM (our method)</td>
<td>0.0985 ± 0.128</td>
<td>1.0364</td>
</tr>
</tbody>
</table>
Results: Correspondence

Left Maxillary Sinus
Leave One Out Analysis

Mean residual surface errors between left out shape and its estimate (mm)

- Deformable Registration
- Gradient Vector Flow (GVF)
- GVF + SSM (our method)

Number of modes
Results: Mesh Quality

Segmentation improved using GVF

Segmentation improved using our method

Triangle Quality
Conclusion

• Our method improves segmentation while maintaining correspondences
• Demonstrate improved segmentation and correspondence

Our shape model contains more accurate information

Our shape model is able to estimate a new shape accurately
Thank you!

Faculty
Russ Taylor
Greg Hager
Masaru Ishii
Austin Reiter
Simon Leonard

Framework
Rob Grupp
cisst Developers

Funding
NIH R01R01-EB015530: Enhanced Navigation for Endoscopic Sinus Surgery through Video Analysis (PI: Hager)
Johns Hopkins University internal funds
References

Questions?

Code will be available on github soon!