The deformable most-likely-point paradigm

Ayushi Sinhaa,*, Seth D. Billingsc, Austin Reitera, Xingtong Liua, Masaru Ishib, Gregory D. Hagera, Russell H. Taylora

aDepartment of Computer Science, the Johns Hopkins University, Baltimore, MD, USA
bDepartment of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
cJohns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

A R T I C L E I N F O

Article history:
Received 12 January 2018
Accepted 30 April 2019
Available online 1 May 2019

Keywords:
Deformable most-likely-point paradigm
Statistical shape models
Deformable registration
Shape inference

A B S T R A C T

In this paper, we present three deformable registration algorithms designed within a paradigm that uses 3D statistical shape models to accomplish two tasks simultaneously:

1) register point features from previously unseen data to a statistically derived shape (e.g., mean shape), and
2) deform the statistically derived shape to estimate the shape represented by the point features.

This paradigm, called the deformable most-likely-point paradigm, is motivated by the idea that generative shape models built from available data can be used to estimate previously unseen data. We developed three deformable registration algorithms within this paradigm using statistical shape models built from reliably segmented objects with correspondences. Results from several experiments show that our algorithms produce accurate registrations and reconstructions in a variety of applications with errors up to CT resolution on medical datasets. Our code is available at https://github.com/AyushiSinha/cisstICP.

© 2019 Elsevier B. V. All rights reserved.

1. Introduction

Ease of access to many digital imaging technologies like cameras that capture images and videos, depth cameras and laser rangefinders that can digitize physical objects as 3D objects (Koller et al., 2004), trackers that can capture motion, and medical imaging technologies that noninvasively image internal anatomy in 2D and 3D, has created a vast repository of imaging data. Several techniques have been developed toward solving the problem of segmenting objects in different types of images (Ferrante and Paragios, 2017; Zhu et al., 2016), and establishing correspondences between segmented objects (Van Kaick et al., 2011). Object segmentations and correspondences enable the computation of object statistics via statistical shape models (SSMs) (Cootes et al., 1995). SSMs not only allow us to better understand the variation in a given population, but are also useful in several applications like improving segmentations (Heimann and Meinzer, 2009) and correspondences (Seshamani et al., 2011; Sinha et al., 2017).

Generative shape models further allow new instances of objects to be estimated, making them extremely powerful tools in many applications. One area that can benefit tremendously from generative models is the field of medicine. As mentioned before, the ease of access to medical imaging technologies has created an abundance of medical image data in many different modalities, like x-ray scans, computed tomography (CT) scans, magnetic resonance (MR) images, etc. This begs the question of whether we can use these existing images to build a framework that can estimate the anatomy of new patients.

In this paper, we present a deformable registration paradigm that can register a point cloud to a statistically derived target shape while deforming the target shape using statistical modes to reflect the shape represented by the point cloud. We build upon the most-likely-point paradigm (Billings et al., 2015), and extend this paradigm to include deformations based on statistics in the optimization. Our framework enables the development of several deformable registration algorithms using different features, noise models, and statistical shape models. We
present three deformable registration algorithms built upon this paradigm that can be used in several applications including surgical procedures like orthopedic interventions and minimally invasive surgeries.

Orthopedic procedures involving the hip or femoral head generally require a full pelvic CT scan to be acquired preoperatively, since CT images exhibit high contrast between bone and soft tissue. This allows for easy pelvic surface extraction from the preoperative image, which can be used for preoperative planning as well as for navigation during surgery. Minimally invasive procedures such as functional endoscopic sinus surgery (FESS) also require high resolution preoperative CT scans not only because the nasal airway and sinuses are thin and complex structures, but also because the bones surrounding the sinuses are extremely thin (Berger et al., 2013). For instance, the ethmoid bone is on average less than 1 mm thick and also has a pseudo stochastic growth pattern (Kainz and Stammberger, 1989). This makes the anatomy too complex to memorize or guess, and can cause difficulty for surgeons to maintain orientation during surgery. Since critical structures, like the brain, carotid arteries, eyes and optic nerves, lie immediately adjacent to the ethmoid bone (Tao et al., 1999), violating them can cause serious injury. These complexities, along with the restricted field of view of endoscopes, make imaging and navigation vital tools in minimally invasive procedures. These tools allow surgeons to maintain orientation by providing a registered reference to preoperative anatomy.

CT image acquisition, however, exposes patients to high doses of ionizing radiation and can have adverse effects. Both the pelvic region and the head contain important organs, and minimizing radiation exposure to these organs is vital. For patients, especially women, of reproductive age, reducing radiation exposure to reproductive organs is an extremely important objective (Ogilvy-Stuart and Shalet, 1993). Our aim, therefore, is to reduce or eliminate the use of CT images, and instead use SSMs of target anatomical structures along with points extracted from these structures intraoperatively using optical trackers, endoscopic video, etc. to accurately estimate patient anatomy via deformable registration.

In the following sections, we review the prior work in the field of registration, describe the deformable most-likely-point paradigm, and develop three algorithms using PCA based SSMs. Finally, we demonstrate the registration and reconstruction accuracy achieved by our methods via simulated experiments, and also show preliminary results on in vivo clinical data.

2. Previous work

Several point-to-point and point-to-surface registration algorithms have been explored in the past. Iterative closest point (ICP) is a standard algorithm that has been used extensively for such registrations (Besl and McKay, 1992; Chen and Medioni, 1992). ICP is a two step algorithm that iterates between finding the closest point correspondences between point sets and finding the rigid registration that best aligns the matched points until convergence (Fig. 1). ICP is a simple and elegant method, but it suffers from some disadvantages, like sensitivity to noise and outliers.

In order to improve upon these, several variants of ICP (Rusinkiewicz and Levoy, 2001) have been presented to handle sparse and noisy point sets with outlier rejection (Chetverikov et al., 2002; Phillips et al., 2007; Bouaziz et al., 2013). ICP has also been presented in probabilistic frameworks. Rangarajan et al. (1997) compute a probabilistic soft-match between each data point in the moving point set and every point in the target set based on Mahalanobis distance. EM-ICP computes multiple matches weighted by normalized Gaussian weights for each moving point and solves for both matches and transformation parameters using expectation maximization (EM). (Granger et al., 2001; Granger and Pennec, 2002) Generalized-ICP uses a probabilistic framework to compute the transformation that minimizes Euclidian distance between point-to-point correspondences computed in the same way as in ICP (Segal et al., 2009). Ideas from several of these probabilistic methods were combined in the iterative most likely point algorithm to find a single most probable match for each data point and compute the transformation that minimizes the Mahalanobis distance between these point-to-point correspondences (Billings et al., 2015).

Point-based matching has also been extended to include additional information such as orientations associated with the points and surfaces allowing disambiguation between points facing opposite directions. Initial methods used orientations to prune invalid point matches (Zhang, 1994; Pulli, 1999) before incorporating orientations within the cost function to be minimized. Assuming small normal differences, Granger et al. (2001) used the Mahalanobis distance between oriented points to formulate a closed form solution for their minimization problem. Orientation noise modeled using the analogues of Gaussian distributions on a unit sphere have also been incorporated into registration problems (Billings and Taylor, 2014, 2015). Deformable versions of ICP have also been presented that determine the displacement field between correspondences constrained by a stiffness term (Amberg et al., 2007). Coherent point drift (Myronenko and Song, 2010) solves for a displacement field that optimizes soft matches in an EM-ICP setting. Hufnagel et al. (2009) incorporated SSMs in an EM-ICP approach that alternates between optimizing transformation parameters and deformation parameters.

We present algorithms that extend the ideas of Hufnagel et al. (2009) by building upon the most-likely-point paradigm presented in Billings et al. (2015) to register data points to a model shape. Registration algorithms within the most-likely-point paradigm also iterate between finding correspondences between point sets and finding the rigid alignment between the correspondences, except that the correspondences are proba-
bilistically most likely matches (Billings et al., 2015), not closest point matches as in ICP, computed using a maximum likelihood setup. We extend this paradigm by incorporating information about the probability that the model shape will deform by a particular amount. Therefore, we find, for each sample point, the most likely match on a shape that is also being deformed to fit the sample points. The information about how a shape will deform is obtained from SSMs, as in Hufnagel et al. (2009), that can be built for a particular structure or region of interest (ROI) using a set of homologous shapes representing this structure or ROI (Chintalapani et al., 2007).

Our shape models are built using principal component analysis (PCA) on a set of shapes obtained by deformably registering (Avants et al., 2011) n_k patient head CTs to a template CT (Avants et al., 2010), and using the resulting deformation fields to deform a mesh in template space to the respective patient CTs (Sinha et al., 2016). Each of these shapes then has n_v corresponding vertices, and can be zero-centered to compute the mean shape:

$$\bar{V} = \frac{1}{n_k} \sum_{j=1}^{n_k} V_j,$$

where V_j denotes the stacked vector of vertices, $V = [v_1, v_2, \ldots, v_{n_v}]^T$, for the jth mesh. The principal modes of variation, m_j, and the mode weights, λ_j, which represent the amount of shape variation along the corresponding m_j are computed by performing an eigen decomposition of the shape covariance matrix, Σ_{SSM}:

$$\Sigma_{SSM} = \frac{1}{n_k} \sum_{j=1}^{n_k} (V_j - \bar{V})(V_j - \bar{V})^T = [m_1 \ldots m_n] \begin{bmatrix} \lambda_1 & \ldots & \lambda_n \end{bmatrix} [m_1 \ldots m_n]^T.$$

The mean shape and the modes of variation define an SSM. Since this is a generative model, any homologous shape V^* can be estimated as

$$\hat{V}^* = \bar{V} + \sum_{j=1}^{n_m} b_j m_j,$$

where $n_m < n_k$ is a user selected number of modes, and b_j are the mode weights or shape parameters that define how much V^* varies from the mean shape along each mode. These can be computed by projecting the mean subtracted V^* onto the modes:

$$b_j = m_j^T (V^* - \bar{V}).$$

In order to convert the shape parameters to units of standard deviation (SD) relative to the SSM covariance, we can rewrite Eq. 1 as

$$\hat{V}^* = \bar{V} + \sum_{j=1}^{n_m} s_j w_j,$$

where $w_j = \sqrt{\lambda_j} m_j$ are the weighted modes of variation, and s_j are the shape parameters in units of standard deviation. These can be obtained by projecting the mean subtracted V^* onto the modes and dividing by the standard deviation.

We extend the most-likely-point paradigm to incorporate SSMs and estimate the patient shape by transforming three rigid registration algorithms to deformable registration algorithms. We briefly introduce these three rigid algorithms here for ease of reference and to establish notation.

The first, iterative most likely point (IMLP) algorithm, incorporates a generalized Gaussian noise model that accounts for anisotropic positional noise (Billings et al., 2015). Assuming measurement errors to be independent, zero-mean, multivariate Gaussian with anisotropic covariance, the match likelihood function for each data point, x, transformed by a current rigid registration estimate, $[R, t]$, is defined as

$$f_{match}(x; y, \Sigma_x, \Sigma_y, R, t) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} e^{-\frac{1}{2} (y - Rx - t)^T \Sigma^{-1} (y - Rx - t)},$$

where $\Sigma = R \Sigma_x R^T + \Sigma_y$, and Σ_x and Σ_y are measurement error covariances for data points, $x \in X$, and corresponding points, y, on the model shape, Ψ, respectively (Billings et al., 2015).

The second algorithm is the iterative most likely oriented point (IMLOP) algorithm which, in addition to a generalized Gaussian noise model that accounts for anisotropic positional measurement errors, also incorporates an isotropic Fischer noise model to account for orientation measurement errors (Billings and Taylor, 2014), since the Fischer distribution is the analog of the Gaussian distribution on a unit sphere (Mardia and Jupp, 2008). For simplicity, we introduce $u = y_p - R x_p - t$, where $x = (x_p, \hat{x}_n)$ is an oriented data point with position component x_p and orientation component \hat{x}_n, and $y = (y_p, \hat{y}_n)$ is the oriented point on the model shape, Ψ, that is assumed to be in correspondence with x. Assuming both position and orientation errors are zero-mean, independent and identically distributed, the match likelihood function for each oriented data point, x, transformed by a current rigid registration estimate, $[R, t]$, is defined as

$$f_{match}(x; y, \Sigma_x, \Sigma_y, \kappa, R, t) = \frac{1}{\sqrt{(2\pi)^d |\Sigma| \cdot 2\pi (\epsilon^\kappa - e^{-\epsilon})}} e^{\kappa y_n R x_n - \frac{1}{2} u^T \Sigma^{-1} u},$$

where κ is the concentration parameter of the orientation noise model. The oriented model point, $y \in \Psi$, is also a parameter of the joint distribution from which the orientation noise is drawn, where \hat{x}_n is the central direction and y_p is the mean position.

The final algorithm is the generalized iterative most likely oriented point (G-IMLOP) algorithm, which incorporates both an anisotropic Gaussian noise model and an anisotropic Kent noise model to account for measurement errors in position and orientation, respectively (Billings and Taylor, 2015). The anisotropic Kent distribution is the analog of the anisotropic Gaussian distribution on a unit sphere (Mardia and Jupp, 2008). Again, we introduce $\alpha = \hat{x}_n R x_n$ and $\epsilon = \frac{1}{2} u^T \Sigma^{-1} u$, for simplicity, along with some new parameters. The ellipticity parameter, β, controls the amount of anisotropy in the orientation noise model. The larger the value of β, the greater the anisotropy, while $\beta = 0$ reduces the orientation noise model to an isotropic Fisher model as formulated in Eq. 4. Major and minor axes, \hat{y}_1 and \hat{y}_2, define the directions of the elliptical level.
sets of the Kent distribution on the unit sphere. The major and minor axes and the central direction, \(\hat{y}_n \), are all orthogonal to each other.

With these terms defined, again assuming both position and orientation errors are zero-mean, independent and identically distributed, the match likelihood function for each oriented data point \(x \), transformed by a current registration estimate, \([R, t]\), is defined as

\[
f_{\text{match}}(x; y, \Sigma_x, \Sigma_y, \kappa, \beta, \hat{y}_1, \hat{y}_2, R, t) = \frac{1}{\sqrt{2\pi |\Sigma|}} \cdot c(\kappa, \beta) \cdot e^{\frac{1}{2}(\hat{y}_{1}^T R \Sigma_{x}^{-1} \hat{y}_{1} - \hat{y}_{1}^T R \Sigma_{y}^{-1} \hat{y}_{1})},
\]

where \(0 \leq 2\beta < \kappa \) and \(c(\kappa, \beta) \) is the normalizing constant of the Kent distribution consisting of complex modified Bessel functions (Mardia and Jupp, 2008).

3. Material and methods

3.1. The deformable most-likely-point paradigm

We extend the aforementioned rigid registration formulations (Sec. 2) to include a probabilistic model for shape likelihood and present deformable registration algorithms based on the most-likely-point paradigm (Billings et al., 2015). Assuming independence between the matches found between data points and model shape and the deformation of the model shape, we can formulate the following deformable match likelihood function (Billings, 2015):

\[
f_{\text{match,deformable}}(x; y, \theta, s, \tilde{V}, W) = f_{\text{match}}(x; T_{\text{ssm}}(y), \theta) \cdot f_{\text{shape}}(T_{\text{ssm}}(y); s),
\]

where \(f_{\text{match}} \) can be any point to point or point to shape match likelihood function, such as those defined in Eqs. 3, 4, and 5, with \(\theta \) representing the distribution parameters of the match likelihood function. The definition of \(f_{\text{shape}} \) depends on the type of model used to compute the shape statistics. For PCA-based SSMs, \(f_{\text{shape}} \) depends on the shape parameters, \(s \), defined in Eq. 2:

\[
f_{\text{shape}}(V; s) = \prod_{j=1}^{n} f_{\text{vertex}}(v_j; s),
\]

where

\[
f_{\text{vertex}}(v; s) = \int_{V} \frac{1}{(2\pi)^{n/2}} e^{-\frac{\|v - \mu\|^2}{2}},
\]

Similarly, the definition of \(T_{\text{ssm}}(y) \) also depends on the type of statistical model being used. Our statistical models are computed on shapes represented by triangular meshes. Since we compute point-to-triangle matches between each \(x \) and \(\Psi \) during the correspondence phase, we know that each matched point, \(y \), on \(\Psi \) resides within the convex hull of the triangle face it is matched to. Therefore, it can be represented as the weighted sum of the triangle vertices,

\[
y = \sum_{j=1}^{3} \mu^{(j)} v^{(j)} \text{ subject to } \sum_{j=1}^{3} \mu^{(j)} = 1.
\]

Every time the model shape is deformed using the current shape parameters during optimization, the deformed matched point can be estimated using these vertex weights, \(\mu^{(j)} \), along with the current vertex locations:

\[
T_{\text{ssm}}(y_i) = \sum_{j=1}^{3} \mu^{(j)} T_{\text{ssm}}(v^{(j)}).
\]

How the vertices are deformed is dependent on the shape model being used to estimate the deformation. Using a generative PCA model, the deformed vertex positions are computed as \(T_{\text{ssm}}(v_i) = \hat{v}_i + \sum_{j=1}^{n} s_j w_j^{(i)} \), where \(w_j^{(i)} \) is the component of the weighted mode, \(w_j = [w^{(1)}_j \ldots w^{(n)}_j]^T \), that corresponds to the \(i \)th vertex, \(v_i \).

3.1.1. Correspondence phase

The matched points are computed during the correspondence phase of our deformable registration algorithms. The deformable version of the correspondence phase is similar to the correspondence phase in the corresponding rigid registration algorithms. The rigid algorithms use principal direction (PD) trees (Billings et al., 2015) to efficiently search for the most likely match, and the PD-tree search techniques remain the same for the deformable algorithms. However, since the positions of the vertices that define the model shape change at every iteration, the PD-tree also must be updated at every iteration.

Since the topology of the model shape does not change with deformation, the PD-tree does not need to be reconstructed at every iteration. Instead, only the positions of the vertices representing the model shape within the PD-tree need to be updated as the model shape changes based on the current model-shape parameters, \(s \), as well as the oriented bounding boxes that bound these vertices within each PD-tree node.

3.1.2. Registration phase

Once matched points are found, a transformation to align corresponding points can be computed during the registration phase by maximizing the total deformable match likelihood function over all corresponding points with respect to both the data transformation parameters and the deformable shape parameters:

\[
f_{\text{match,deformable}}(X; Y; \theta, s, \tilde{V}, W)
\]

Maximizing the total deformable match likelihood function (Eq. 7) is equivalent to minimizing its negative log, or the total deformable match error function:

\[
E_{\text{match,deformable}}(X; Y; \theta, s)
\]

where \(E_{\text{match}}(\cdot) \) is the negative log likelihood of the corresponding match likelihood function, such as those defined in Eqs. 3, 4, and 5, and \(T(x) \) is the standard transformation applied to the
data points, again as defined in Eqs. 3, 4, and 5. \(T_{ssm}(y_i) \) is the SSM-based deformable transformation applied to the matched point, \(y_i \), as defined in Eq. 6, and \(s_i \) are the deformable shape parameters. For PCA-based SSMs, we assume that the data has a Gaussian distribution, and therefore, the shape parameters, \(s_i \), for each mode may be constrained between \(\pm 3 \) SDs from the mean shape since this interval covers \(99.7\% \) of variations. In our implementation, \(s_i \) is initialized to 0, meaning the registration starts with the mean shape. However, \(s_i \) may be initialized differently.

3.2. Deformable iterative most likely point (D-IMLP) algorithm

The match likelihood function for IMLP (Eq. 3) yields a match error function of

\[
E_{\text{IMLP}}(x; y, \Sigma_x, \Sigma_y, R, t) = \log |\Sigma| + (y - Rx - t)^T \Sigma^{-1} (y - Rx - t),
\]

which, after dropping the constant terms, leads to the simplified registration cost function of

\[
T = \arg\min_{[r,t]|s} \frac{1}{2} \sum_{i=1}^{n_{data}} (T_{ssm}(y_i) - Rx_i - t)^T (R \Sigma_y R^T)^{-1} (T_{ssm}(y_i) - Rx_i - t) + \frac{1}{2} \sum_{j=1}^{n_{modes}} \|s_j\|_2^2.
\]

where a factor of \(\frac{1}{2} \), which was excluded from \(E_{\text{IMLP}} \) (Eq. 9) for simplification, has been added back, and the shape covariances, \(\Sigma_y \), are all assumed to be zero since our focus is on the derivatives introduced by the shape deformations during optimization. This extends the work of Hufnagel et al. (2009) by allowing for more general (or unconstrained) noise models to be associated with point features and simultaneously solving for both shape and transformation parameters based on point-to-point correspondences.

Eq. 10 can be optimized by computing the gradient with respect to the optimization parameters, and applying a nonlinear quasi-Newton based optimizer. In order to apply the quasi-Newton solver to minimize Eq. 10, the variables being optimized need to be reparametrized to enforce the algebraic constraints of the rotation matrix, that is, \(R^T R = I \) and \(\det(\mathbf{R}) = 1 \). This is accomplished by using Rodrigues’ parametrization, which represents a rotation as a 3-vector, \(r = [r_x, r_y, r_z] \), whose direction and magnitude signify the axis and angular extent of rotation, respectively.

We also re-express the transformation \(T(x_i) \) in the reference frame of \(Y \) as \(T(y_i) \) in order to keep all transformation in the same space. The deformable registration cost function can then be re-written as

\[
T = \arg\min_{[r,t]|s} \left(\sum_{i=1}^{n_{data}} C_{\text{match}} + C_{\text{shape}} \right),
\]

where

\[
C_{\text{match}} = z_i^T \Sigma_{\text{x}}^{-1} z_i \quad \text{and} \quad C_{\text{shape}} = s^T s,
\]

\[
z_i = R(r)^T (T_{ssm}(y_i) - R(r)x_i - t)
\]

\[
R(r) \quad \text{is the 3×3 rotation matrix corresponding to the Rodrigues’ vector,} \quad r, \quad \text{and is defined as}
\]

\[
R(r) = I + \sin(\theta) \text{skew}(\alpha) + (1 - \cos(\theta)) \text{skew}(\alpha)^2,
\]

where \(\theta = \|r\|_2 \) is the magnitude of \(r \), representing the angle of rotation, \(\alpha = \frac{r}{\|r\|_2} \) is the unit vector in the direction of \(r \), representing the axis of rotation, and \(\text{skew}(\alpha) \) is the skew symmetric matrix formed using the elements of \(\alpha \).

If the match likelihood function for IMLP was defined for each data point, \(x_i \), transformed by a similarity transformation estimate, \([a, R, t] \), instead of a rigid registration estimate, then the match likelihood function can be defined similarly as before:

\[
f_{\text{match}}(x; y, \Sigma_x, \Sigma_y, a, R, t) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \cdot e^{-\frac{1}{2} (y - aRx - t)^T \Sigma^{-1} (y - aRx - t)},
\]

where \(a \) is the scale factor. This term is very similar to Eq. 3, and produces an slightly modified deformable registration cost function for D-IMLP compared to Eq. 10, with an extra optimization term, \(a \), for scale:

\[
T = \arg\min_{[a,r,t]|s} \frac{1}{2} \sum_{i=1}^{n_{data}} (T_{ssm}(y_i) - aRx_i - t)^T (R \Sigma_y R^T)^{-1} (T_{ssm}(y_i) - aRx_i - t) + \frac{1}{2} \sum_{j=1}^{n_{modes}} \|s_j\|_2^2,
\]

which can be re-written similarly to Eq. 11,

\[
T = \arg\min_{[a,r,t]|s} \left(\sum_{i=1}^{n_{data}} C_{\text{match}} + C_{\text{shape}} \right),
\]

with a slight modification in the \(C_{\text{match}} \) term in Eq. 12, so that

\[
z_i = R(r)^T (T_{ssm}(y_i) - t) - ax_i.
\]
3.3. Deformable iterative most likely oriented point (D-IMLOP) algorithm

The registration cost function for IMLOP can be derived as

\[
T = \arg\min_{y_i \in \Psi} \left\{ \frac{1}{2} \sum_{i=1}^{n_{data}} \left((y_i - R_{ssm} x_i - t)^T \Sigma_i^{-1} (y_i - R_{ssm} x_i - t) + \kappa \sum_{j=1}^{n_{match}} \|s_j\|^2 \right) \right\}
\]

which is similar to the registration cost function for IMLOP, with an additional term for orientation (Billings and Taylor, 2015). This allows us to derive the deformable registration cost function for the deformable iterative most likely oriented point (D-IMLOP) algorithm (Fig. 3, left):

\[
T = \arg\min_{[R,t],s} \left\{ \sum_{i=1}^{n_{data}} \left(C_{pi} + C_{ni} \right) + C_{shape} \right\},
\]

where \(C_{pi}\) is defined as \(C_{\text{match}}\) in Eq. 12, and

\[
C_{ni} = \kappa (1 - \hat{y}_n^T R \hat{x}_n).
\]

The remaining terms are identical to those in Eq. 12.

Again, if a similarity transform was being solved for in the formulation for IMLOP, then the deformable registration cost function for D-IMLOP would change slightly to

\[
T = \arg\min_{[a,R,t],s} \left\{ \frac{1}{2} \sum_{i=1}^{n_{data}} \left((T_{ssm}(y_i) - aR_{ssm} x_i - t)^T \Sigma_i^{-1} (T_{ssm}(y_i) - aR_{ssm} x_i - t) + \kappa \sum_{j=1}^{n_{match}} \|s_j\|^2 \right) \right\}
\]

which can be rewritten as

\[
T = \arg\min_{[a,R,t],s} \left\{ \sum_{i=1}^{n_{data}} \left(C_{pi} + C_{ni} \right) + C_{shape} \right\},
\]

where \(C_{pi}\) is modified in the same way as \(C_{\text{match}}\) in Eq. 13, \(C_{ni}\) is defined the same way as in Eq. 16, and any other terms are identical to those in Eq. 12.

3.4. Generalized deformable iterative most likely oriented point (G-IMLOP) algorithm

As before, the registration cost function for G-IMLOP is

\[
T = \arg\min_{[R,t],s} \left\{ \sum_{i=1}^{n_{data}} \left((y_i - R_{ssm} x_i - t)^T \Sigma_i^{-1} (y_i - R_{ssm} x_i - t) \right. \right. \\
\left. \left. - \kappa \sum_{j=1}^{n_{match}} \|s_j\|^2 \right) \right\}
\]

which is similar to that of IMLOP, with the addition of a term to control the ellipticity of the Kent distribution. This produces the following deformable registration cost function for the generalized deformable iterative most likely oriented point (G-IMLOP) algorithm (Fig. 3, right):

\[
T = \arg\min_{[R,t],s} \left\{ \frac{1}{2} \sum_{i=1}^{n_{data}} \left((T_{ssm}(y_i) - aR_{ssm} x_i - t)^T \Sigma_i^{-1} (T_{ssm}(y_i) - aR_{ssm} x_i - t) \right. \right. \\
\left. \left. - \kappa \sum_{j=1}^{n_{match}} \|s_j\|^2 \right) \right\}
\]

which can also be optimized as before. Using similar reparameterizations as before, Eq. 18 can be rewritten in the form of Eq. 15, with all terms remaining unchanged except \(C_{ni}\), which is now defined as:

\[
C_{ni} = \kappa (1 - \hat{y}_n^T R \hat{x}_n) - \beta \left(\hat{y}_n^T R \hat{x}_n - \left(\hat{y}_n^T R \hat{x}_n \right)^2 \right).
\]
4. Experiments and results

In order to evaluate the robustness of our algorithms, we ran several different experiments. These experiments are performed using different datasets:

1. 53 mesh sinus dataset extracted from 1mm^3 head CTs (Beichel et al., 2015; Bosch et al., 2015; Clark et al., 2013; Fedorov et al., 2016)
2. 42 mesh pelvis dataset extracted from $1.5 \times 1.5 \times 1.5 \text{mm}^3$ CTs (Grupp et al., 2016)
3. in vivo nasal endoscopy data
4. 385 mesh human face dataset (Zhang et al., 2004)

Results from experiments studying the effects of varying sample size, noise models and outliers, and additional scale parameter are presented in Appendix A while some of the key results from leave-out and clinical experiments are presented here.

For experiments where ground truth is available, registration results are evaluated based on how well the transformation and shape parameters are recovered. Errors in rotation and translation are evaluated by comparing the initial offset applied to the final transformation produced. The errors in shape parameter recovery can be measured by computing the difference between the known shape parameters and those estimated by our algorithms, or by computing the Hausdorff distance between the target shape (from which points were sampled) and the shape recovered by our algorithms (Fig. 4, left). We call this the total shape error (tSE). We also report the total registration error (TRE) coined by Maurer et al. (1993) since the CT volumes used to segment the sinus structures had a resolution of $1 \times 1 \times 1 \text{mm}^3$. An angular noise model with an SD of 20° and an eccentricity factor, e, of 0.5 was used. The anisotropy of the angular noise model is defined using e, which takes values within $[0,1)$. The ellipticity parameter, β (Eqs. 5, 18), can then be defined using e as $\beta = e_2^2$. The algorithms assume the same noise model as was used to generate the sample points.

4.1. Leave-one-out experiment

The leave-one-out experiment was designed by building n_s SSMs in a n_t mesh dataset, with a different shape in the dataset left out for each SSM construction. This results in 53 different SSMs for the sinus dataset. The leave out shape is then estimated in two ways:

1. by projecting the left out shape onto the SSM to obtain mode weights, and using different numbers of modes along with the mode weights in Eq. 1, and
2. by using our algorithms with different numbers of modes.

We estimated the left out shapes from the sinus dataset using 11 different numbers of modes, starting at 0 and increasing at increments of 5 up to 50 modes, producing a total of 1749 registrations. At 0 modes, the algorithms used are the corresponding non-deformable algorithms. This experiment allows us to evaluate how well our algorithms perform, given shapes not seen before by the shape model. We can compare the errors produced by our algorithms in estimating the left out shape to ground truth since we know what the left out shape looks like and also to the errors produced by the SSM estimate of the left out shape. The SSM estimate of the left out shape represents the upper bound for how well our algorithms can perform. This experiment allows us to relate the errors produced by our algorithms to how representative the SSM used was of the shape being estimated.

1000 sample points were generated for each experiment by uniformly sampling from the left out shape (Fig. 5). An isotropic positional noise model with a SD of 1 mm in each direction in plane and 1 mm out of plane ($1 \times 1 \times 1 \text{mm}^3$) was used, since the CT volumes used to segment the sinus structures had a resolution of $1 \times 1 \times 1 \text{mm}^3$. An angular noise model with an SD of 20° and an eccentricity factor, e, of 0.5 was used. The anisotropy of the angular noise model is defined using e, which takes values within $[0,1)$. The ellipticity parameter, β (Eqs. 5, 18), can then be defined using e as $\beta = e_2^2$. The algorithms assume the same noise model as was used to generate the sample points.

4.1.1. Experiment 1: Middle turbinates

In this experiment, the middle turbinate models from the sinus dataset were used to generate sample points. The left out middle turbinates recovered using our algorithms were comparable to both the left-out shapes and the estimates produced by the SSM (Fig. 6, top). Of the 1749 runs, 57.06% of the D-IMLP runs recovered the left out mesh with mean tRE less than 1 mm compared to 67.92% of D-IMLOP runs and 90.51% of GD-IMLOP runs. The mean tRE produced by D-IMLP over all

1 Please note that our total registration error (tRE) is different from target registration error (TRE) coined by Maurer et al. (1993)
The mean tRE was 1.30 (± 0.94) mm, while that produced by D-IMLOP was 0.94 (± 0.56) mm (p < 0.001) compared to D-IMLP. GD-IMLOP produced a mean tRE of 0.65 (± 0.31) mm (p < 0.001 compared to both D-IMLP and D-IMLOP).

As the number of shape parameters increased, the performance of D-IMLP deteriorated quickly since position information from the sample points becomes insufficient information as the number of parameters to optimize over increases (Fig. 6). With added normal information, the performance improved, although D-IMLOP showed a similar but less drastic trend as D-IMLP in recovering the transformation (Fig. 6). Since the noise model assumed by D-IMLOP does not as accurately describe the noise in the sample points, errors can be introduced in correspondences, especially in the depth direction since the middle turbinate is a long structure extending in the depth direction. GD-IMLOP, however, either showed improvement or was able to maintain performance with increasing number of shape parameters (Fig. 6), showing the effectiveness of adding additional information in the form of normals and making appropriate assumptions about noise in the data. Further, small translations and rotations can produce an effect of canceling each other out producing submillimeter tREs despite translation and rotation errors of 1 mm and 1°, respectively. Shape parameters can also drive down tREs despite misalignments in translation and rotation.

We also computed registrations for this dataset using deformable coherent point drift (CPD), a standard deformable registration algorithm (Myronenko and Song, 2010). Since deformable CPD produces a deformation field that moves the vertices from the mean shape towards to the sample points to fit the samples, and does not produce a transformation matrix, we cannot compute a tRE. However, since we know the original offset transformation applied to the sample points, we can transform the final mesh produced by the algorithm by the inverse of the original transformation and compute the tSE. In order to produce a transformation matrix, rigid or affine CPD can be performed first, followed by deformable CPD. However, this is not as time efficient.

Note that since CPD does not use different number of modes to compute its registration, we show the results from CPD as a baseline in Fig. 6 (top-right). Although, deformable CPD outperforms D-IMLP and D-IMLOP, and performs comparably to GD-IMLOP using more than 20 modes, CPD is considerably slower than our algorithms. The average time taken to perform the CPD registrations was 40.55s, compared to 28.89s required by GD-IMLOP using 50 modes, which is slower than runs using fewer modes (Fig. 7). D-IMLOP and D-IMLP took 8.96s and 47.69s, respectively, when using 50 modes. Further, the error metrics produced by our algorithms show correlation with the tRE (Fig. 8, top and bottom-left), allowing our methods to assign confidence to the registration produced (Sinha et al., 2018). However, the error produced by CPD does not show correlation with the tSE (Fig. 8, bottom-right). This error, therefore, cannot be used to assign confidence to or detect the success or failure of the registration produced.

4.1.2. Experiment 2: Right nasal airway

Since both turbinates would generally not be visible at the same time during an endoscopic procedure, we used the right nasal airway models to generate sample points in this experiment. The left-out right nasal cavity meshes recovered using our algorithms were again comparable to the estimates produced by the SSM, with GD-IMLOP producing mean tSE errors almost equal to those produced by the SSM up to about 30 modes (Fig. 9, top). Of the 1749 runs, 61.01% of the D-IMLP runs recovered the left-out mesh with mean tRE less than 1 mm compared to 86.16% and 98.51% of D-IMLOP and GD-IMLOP runs, respectively. The mean tREs produced by D-IMLP, D-IMLOP, and GD-IMLOP over all runs were

*all statistical significance figures reported in this paper are evaluated using the paired-sample Student’s t-test.
Fig. 8. Leave-one-out experiment: residual errors compared against tRE produced by D-IMLP (top-left), D-IMLOP (top-right), and GD-IMLOP (bottom-left), and error produced by CPD compared against the tSE (bottom-right) in Exp. 1. The two measures show correlation using D-IMLP, D-IMLOP and GD-IMLOP with coefficients 0.91, 0.65 and 0.61, respectively, but not using CPD (correlation coefficient = 0.05).

1.15 (±0.63) mm, 0.76 (±0.40) mm (p < 0.001 compared to D-IMLP), and 0.60 (±0.16) mm (p < 0.001 compared to both D-IMLP and D-IMLOP), respectively. As in the previous experiment, the performance of D-IMLP deteriorated quickly as the number of shape parameters increased. With added orientation, D-IMLOP either maintained performance or deteriorated slowly with increasing number of shape parameters, while GD-IMLOP either showed improvement or was able to maintain performance (Fig. 9). As before, these improvements can be attributed to increasing the amount of information available by adding orientations and making appropriate noise assumptions in the presence of increased number of parameters to estimate.

We were not able to compare results from this experiment to CPD because our machine was unable to handle the memory overhead of CPD with larger meshes. CPD computes a $n_v \times n_v$ matrix, where n_v is the number of vertices in the deformable mesh. This results in extremely large memory requirements even for medium sized meshes, a drawback that our methods do not suffer from.

4.2. Partial data experiment

This experiment is set up similarly to the leave-one-out experiments, but in order to simulate more realistic scenarios, we used the pelvis and right nasal cavity SSMs to generate point samples from part of the left out shape, rather than uniformly from the entire mesh, for each registration (Fig 10). The part of the meshes that points are generated from depends on the procedure being simulated. We design two experiments simulating two different procedures. For both experiments, 2000 points are sampled from the candidate regions of the meshes with appropriate noise added to the sampled points.

Although we do not have results from CPD due to computational limitations of CPD with relatively large meshes, we can assume that it would not perform as well in recovering the shape because CPD only deforms the parts of the mesh that sample points are matched to and not the overall mesh.

4.2.1. Experiment 1: Pelvis

Using the pelvis dataset, we simulate a situation in which only a partial CT scan of the pelvis is obtained to prevent radiation exposure to reproductive organs. Points are sampled only from this partial scan containing the ilium and the ischium (Fig 10, left), and anisotropic noise with SDs of $1 \times 1 \times 2$ mm3 and 10° ($e = 0.5$) is added to position and orientation data, respectively. An instance of the pelvis is estimated by our algorithms using these sampled points and a generous noise assumption with SDs of $2 \times 2 \times 3$ mm3 and 30° ($e = 0.5$) for position and orientation data, respectively. Our algorithms adjust these noise assumptions based on inlying matches found in each iteration (Billings et al., 2015). Noise assumptions are also restricted from becoming too large in the case of partial data availability to avoid instabilities (Billings et al., 2015).

Fig. 10. An example of data generated for the partial data experiment: (left) points are sampled only from the ilium and ischium on the pelvis mesh, and (right) points are sampled from the front section of the right nostril which include parts of the septum and middle and inferior turbinates.
Fig. 11. Partial data experiment: mean tRE (top-left), tSE (top-right), translation and rotation errors (bottom) obtained using different number of modes to estimate the left-out pelvis meshes and recover the transformations in Exp. 1.

Fig. 12. Partial data experiment: mean tRE (top-left), tSE (top-right), translation and rotation errors (bottom) obtained using different number of modes to estimate the left-out right nasal cavity meshes and recover the transformation in Exp. 2.

Fig. 13. Partial data experiment: residual errors compared against tRE for GD-IMLOP in (L) Exp. 1 using pelvis data (correlation coefficient = 0.56) and (R) Exp. 2 using right nasal cavity data (correlation coefficient = 0.64).

Results show a big improvement in both transformation parameters and tSE going from 0 to 10 modes (Fig. 11). However, with over 10 modes, the improvement in transformation parameters stabilizes, and only a gradual improvement in tSE is observed, although the trend followed by the tSE is similar to that followed by the error between the left out shape and the SSM instance of the left out shape (Fig. 11, top-right). The resulting tRE falls below 2 mm, the desired accuracy for pelvis registrations, with only 10 modes (Fig. 11, top-left).

4.2.2. Experiment 2: Right nasal airway

Using the right nasal cavity models, we simulate points that would be generated from nasal endoscopy. Points are sampled only from parts of the nasal cavity that would be visible to the endoscope when inserted into the nose (Fig 10, right) and anisotropic noise with SDs of 0.5 × 0.5 × 1 mm and 10° (σ = 0.5) is added to position and orientation data, respectively, since this produced point clouds that resembled reconstructions obtained from in vivo data using the method described in the following section (Sec. 4.3). Positional noise in the generated samples has a larger standard deviation in the z-direction because depth is harder to estimate from video. The left out nasal cavity is then estimated using these sampled points and a noise model assumption with SDs of 1 × 1 × 2 mm and 30° (σ = 0.5) for position and orientation data, respectively.

This experiment yielded slightly different results due to the increased complexity of this data. Although the rotation errors either remained stable or showed improvement with increasing number of modes, rotation errors remained stable or degraded, as in the case of D-IMLOP (Fig. 12, bottom). The tSE only showed steady improvement in the case of GD-IMLOP (Fig. 12, top-right). However, the mean tSE for all algorithms remained below 1 mm. Combined, only GD-IMLOP showed improved tREs as the number of modes increased and consistently produced errors below 1 mm (Fig. 12, top-left). Mean tREs produced by D-IMLP, D-IMLOP, and GD-IMLOP over all runs were 1.29 (±0.31 mm), 1.00 (±0.25 mm) (p < 0.001 compared to D-IMLP), and 0.80 (±0.18 mm) (p < 0.001 compared to both D-IMLP and D-IMLOP), respectively. Improvement in errors produced by GD-IMLOP is reflected in the residual errors produced by the algorithm (Fig. 13, right).

4.3. Clinical data experiment

An anonymized in vivo clinical dataset consisting of endoscopic video of the nasal cavity and EM-tracking information was obtained from several patients who were examined
at the Johns Hopkins Outpatient Center. Permission to collect this dataset, given patient consent, was approved by the Johns Hopkins internal review board (IRB) under application number NA_00074677.

A modified version of the learning-based photometric reconstruction technique developed by Reiter et al. (2016) was used to reconstruct structures from endoscopic video collected from patients who volunteered to enroll in our study. Structure from motion (S/M) points obtained from video sequences (Leonard et al., 2016, 2018) were used to train a self-supervised deep neural network that enforces depth consistency between frames using relative pose information from S/M (Liu et al., 2018). This network was then used to predict the depth associated with each pixel in a single video frame. This method computes highly dense reconstructions of structures visible in the frame. 2000 points each were sampled from reconstructions from two different frames. These samples were manually initialized in the mean left nasal cavity mesh, and registered using our algorithms with 10 modes restricted within ±1 SD. The scale estimation was restricted within [0.7, 1.3], and anisotropic noise models with SDs of 1 × 1 × 2 mm³ and 40° (ε = 0.5) were assumed for position and orientation, respectively.

For the first set, D-IMLP failed to produce a meaningful registration due to lack of sufficient information since it does not use orientation information (Fig. 14, top-left), and D-IMLOP failed due to incorrect angular noise assumptions (Fig. 14, top-middle). GD-IMLOP, however, was able to produce submillimeter residual error of 0.92 (±1.44) mm (Fig. 14, top-right). We also compute the tSE between shapes computed by our algorithms and the patient shape automatically segmented as described before in Sec. 2. GD-IMLOP was able to estimate the patient shape with a mean tSE of 0.98 (±0.8) mm. Using the second set of samples, GD-IMLOP converged with a residual error of 0.77 (±1.18) mm (Fig. 14, bottom-right), and D-IMLOP and D-IMLP also produced submillimeter residual errors of 0.6 (±0.98) mm and 0.5 (±0.82) mm, respectively (Fig. 14, bottom-left and bottom-middle). All three algorithms also recover the patient shape successfully with tSEs of 0.95 (±0.88) mm, 0.95 (±0.83) mm, and 0.96 (±0.83) mm for GD-IMLOP, D-IMLOP, and D-IMLP, respectively.

5. Discussion

In summary, our experiments show that our algorithms exhibit improved performance with increasing number of modes, and GD-IMLOP outperforms both D-IMLOP and D-IMLP. This is expected since GD-IMLOP is the most generalized of the algorithms presented and, therefore, is able to best model the noise in the data used for our experiments. The leave-out analysis shows that GD-IMLOP can match the SSM instance of the left-out shape for some number of modes. However, GD-IMLOP is slower than D-IMLOP since it solves a more complex objective function. This trade-off between runtime and accuracy is important to keep in mind for different applications. GD-IMLOP was able to maintain performance in increasingly difficult settings such as partial data and unknown noise. Finally, our clinical evaluations also result in submillimeter mean residual errors and tSEs.

6. Conclusions and future work

In this paper, we have presented a deformable registration paradigm that can be used to build several different types of registration algorithms that simultaneously solve for both transformation and shape parameters. We demonstrate this with three algorithms that use different types of features and noise models. Additional algorithms can be developed under this paradigm using different or additional features (e.g., occluding contours or non-geometric features like RGB values associated with points), assuming different noise models that better explain certain types of data (e.g., Poisson distribution), or utilizing different types of generative SSMs (e.g., those that do not assume Gaussian distribution in the data or that the data lie in a single subspace).

Our algorithms are validated through several different experiments that show that our methods, especially those that use orientation information in addition to position, can estimate transformation and shape parameters with high accuracy. This result is further strengthened by the promising performance of our algorithms in preliminary experiments with in vivo nasal endoscopy data. Our algorithms also provide an added advantage in that the error metrics produced by them correlate with tRE, allowing our algorithms to assign confidence to the registrations produced based on the residual errors produced by them.

In the future, we hope to build more extensive shape models of anatomy using many more CT images (on the order of thousands) to better explain the variation in different anatomical structures, and also to conduct more clinical experiments with reconstructions from multiple video frames and spanning a larger extent of the nasal passage. This will allow us to better establish how well we are able to infer anatomical structures that we do not see in video or have samples from. We also hope to explore other statistical shape models that can better explain the variation in more complex regions of the sinuses like the...
ethmoid cells which have a honeycomb-like structure. Additionally, we plan to incorporate more features, like occluding contours (Billings et al., 2016), into our framework to further strengthen the application of these methods in the medical field.

SSMs can also be used in applications outside the medical field. Initial exploration in learning the range of human facial expression has shown promising results (Sec. Appendix A.5). While facial expressions may be hard to visualize when represented as point clouds, we expect that with enough shapes and the right SSM, we can infer emotion by registering a statistically derived shape to the point cloud and reconstructing the expression being rendered. We also hope to build models better suited to explain complex data like pose variation, and incorporate these models, in addition to PCA models, into our framework to enable tasks like pose classification. Our code is available at https://github.com/AyushiSinha/cisstICP.

Acknowledgments

This work was funded by NIH R01-EB015530: Enhanced Navigation for Endoscopic Sinus Surgery through Video Analysis, NSF Graduate Research Fellowship Program, a fellowship from Intuitive Surgical, Inc., JHU Provost’s Postdoctoral Fellowship, and other JHU Internal Funds. We would also like to acknowledge the JHU Applied Physics Laboratory for providing the pelvis meshes that were extracted from CTs obtained as part of the Allometry project, the Cancer Imaging Archive (TCIA) for the head CTs from which structures in the nasal cavity were extracted, and the University of Washington Graphics and Imaging Laboratory for making the human expression data available. Finally, we would like to thank Keenan Crane for allowing us to use a modified version of his saddle figure seen in Figs. 1, 2, and 3, and in the graphical abstract.

References

