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Abstract
Purpose Clinical examinations that involve endoscopic exploration of the nasal cavity and sinuses often do not have a
reference preoperative image, like a computed tomography (CT) scan, to provide structural context to the clinician. The aim
of this work is to provide structural context during clinical exploration without requiring additional CT acquisition.
Methods We present a method for registration during clinical endoscopy in the absence of CT scans by making use of shape
statistics from past CT scans. Using a deformable registration algorithm that uses these shape statistics along with dense point
clouds from video, we simultaneously achieve two goals: (1) register the statistically mean shape of the target anatomy with
the video point cloud, and (2) estimate patient shape by deforming the mean shape to fit the video point cloud. Finally, we
use statistical tests to assign confidence to the computed registration.
Results We are able to achieve submillimeter errors in registrations and patient shape reconstructions using simulated data.
We establish and evaluate the confidence criteria for our registrations using simulated data. Finally, we evaluate our registration
method on in vivo clinical data and assign confidence to these registrations using the criteria established in simulation. All
registrations that are not rejected by our criteria produce submillimeter residual errors.
Conclusion Our deformable registration method can produce submillimeter registrations and reconstructions as well as
statistical scores that can be used to assign confidence to the registrations.

Keywords Statistical shape models · Navigation for clinical endoscopy · Deformable registration · Shape estimation ·
Registration confidence

Introduction

Over 10% [14] of the population in the USA suffers from
chronic rhinosinusitis (CRS). CRS is the prolonged inflam-
mation and swelling in the nasal passages and sinuses which
can cause interference with drainage, congestion, facial pain,
etc [19]. Since CRS is a chronic disease, patients require
regular clinic visits and care is provided over a lifetime. If
medical treatment ofCRS is unable to improve patient quality
of life, surgery may be needed. Minimally invasive surgical
treatment of CRS uses an endoscope to visualize the nasal
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cavities and a navigation system accompanied by a reference
computed tomography (CT) image of the patient to guide the
surgeon. However, diagnosis and clinical examination of the
nasal cavities are generally not accompanied by a CT scan
since CT image acquisition exposes patients to high doses
of ionizing radiation. Therefore, unless necessary, as in the
case of surgery, CT image acquisition is avoided. This leaves
clinicians performing examinations to depend entirely on the
endoscopic camera, memory, and experience to identify both
the anomaly and its optimal treatment. However, endoscopic
cameras have limited field of view and certain regions of the
sinuses exhibit pseudo-stochastic growth patterns that are too
complicated to memorize [25] and can disorient even expe-
rienced clinicians.

In order to reduce clinicians’ dependence on experience
or memory and to provide additional context during clini-
cal endoscopy, we present a method that enables navigation
without the need for accompanying patient CT scan or other
preoperative imaging and associates confidence estimates
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with the navigation being provided. Further, our system does
not introduce any additional devices than those already used
in clinic. Therefore, the clinician is not responsible for any-
thing in addition to the endoscope. Most navigation systems
that have already been developed are intended for surgical use
[10,13,27]. Surgical navigation through the nasal cavities is
almost always accompanied by preoperativeCT scans,which
have high contrast between air, bone, and soft tissue. Navi-
gation gives surgeons a better understanding of the location
of the endoscope relative to anatomy not visible in endo-
scopic video. It also informs surgeons about their proximity
to surrounding bones and critical structures like the brain,
eyes, optic nerves, carotid arteries, etc., the thickness of sur-
rounding bones, and other useful information. This enables
surgeons to make more informed decisions during surgery
and prevent harm to critical structures nearby.

The primary difference between prior methods for navi-
gation and the method presented in this paper is the absence
of patient specific CT scans. In order to compensate for
this absence, we use past CT scans from population to
build statistical shape models (SSMs) of relevant anatom-
ical structures [17]. Statistically derived shapes, e.g., the
mean shape, are then deformably registered to dense recon-
structions of anatomy visible in endoscopic video, and
statistical confidence measures are automatically assigned
to the registrations [40]. The registration accomplishes two
tasks simultaneously. First, it aligns the endoscopic video to
the mean shape, giving the clinician more information about
where surrounding structures may be. Second, it deforms the
mean shape to fit the structure obtained from video and, in
effect, estimates the patient CT [41]. The confidence mea-
sure further informs the clinician about when and how much
the navigation system can be trusted and also allows the
navigation system to attempt to improve itself if it has low
confidence in its current registration estimate.

Weperformexperimentswith simulated and in vivodata to
evaluate our framework.Wefirst establish that our framework
can compute submillimeter registrations and reconstructions
using simulated data.We also establish and evaluate our con-
fidence assignment policy using simulated data. Finally, we
evaluate our framework on in vivo clinical data and use the
confidence criteria established in simulation to assign confi-
dence to these registrations.

Prior work

There has been a lot of prior work in point-to-point and point-
to-surface registration, and the Iterative Closest Point (ICP)
algorithm [5,15] has emerged as one of the standard regis-
tration algorithms. ICP is a two-step algorithm that iterates
between finding the closest point correspondences between
point sets and finding the rigid transformation that best aligns

these correspondences. These two steps are repeated until
convergence. Many different methods [35] have built upon
this simple and elegant formulation to handle sparse and
noisy data by adding outlier detection [12,33] and by refram-
ing the problem in a probabilistic setting to incorporate noise
estimates into the objective function [9,21,36]. Ourmethod is
formulated in a probabilistic framework similar to that of [9].

Several methods have also explored adding additional
features to the registration process. For instance, normals
have been used to disambiguate between point sets that are
oriented differently [7,8,22,30,31], occluding contours have
been used to match object edges [10], and color and texture
information have been used to disambiguate between points
extracted from different objects [20,24]. The method evalu-
ated in this paper is a deformable extension of the registration
method by [8] which, like ICP, is an iterative two-step algo-
rithm and, unlike ICP, incorporates anisotropic noise in both
position and orientation components in thematch step aswell
as the align step.

Many deformable registration techniques have also been
explored using, among others, stiffness parameters that are
used to constrain deformations between correspondences [1]
and displacement fields that optimize soft matches between
points sets [32]. Our deformable algorithm extends the ideas
of [23] by incorporating SSMs into the objective function.
These SSMs describe the variance in a set of shapes with
correspondences [17] and are used to drive the deformation
in our method.

Methods

We build SSMs of anatomical structures by automatically
segmenting 53 publicly available head CTs [4,11,16,18]. 3D
meshes extracted from manually created labels in a tem-
plate CT image [38] are transferred to the 53 CTs using
deformation fields produced by an intensity-based CT–CT
registration algorithm [2]. With some improvements to these
initial segmentations [39], we obtain reliably segmented
structures in all CTs along with reliable correspondences.
These correspondences enable us to build SSMs of the seg-
mented structures using established methods like principal
component analysis (PCA) [17]:

�SSM = 1

ns

ns∑

j=1

(V j − V̄)(V j − V̄)T

= [m1 . . .mns ]
⎡

⎢⎣
λ1

. . .

λns

⎤

⎥⎦ [m1 . . .mns ]T,

where V j is the stacked vector of vertices, V = [v1 v2 . . .

vnv ]T, for the j th mesh, V̄ is the mean shape computed by
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averaging the nv corresponding vertices over ns shapes, V̄ =
1
ns

∑ns
j=1V j , and �SSM is the shape covariance matrix. An

eigen decomposition of �SSM produces the principal modes
of variation, m, and the mode weights, λ, which represent
the amount of variation along the corresponding m. PCA
enables any new shape, V∗, that is in correspondence with
the shapes used to build the SSM, to be estimated using V̄,
m, and λ: Ṽ∗ = V̄+ ∑nm

j=1 s jw j , where Ṽ∗ is the estimated
V∗, 1 ≤ nm < ns is some specified number of modes, w j =√

λ jm j are the weighted modes of variation, and s j are the
shape parameters in units of standard deviation (SD) which
can be obtained by projecting the mean subtracted V∗ onto
the modes, s j = mT

j (V
∗ − V̄)/

√
λ j .

These shape parameters, s = {s j }, can be incorpo-
rated into probabilistic models of registration to allow for
optimization over s in addition to other registration param-
eters [41]. In particular, we evaluate the deformable exten-
sion of the generalized iterative most likely oriented-point
(G-IMLOP) algorithm, an iterative rigid registration algo-
rithm [8]. The generalized deformable iterative most likely
oriented-point (GD-IMLOP) algorithm extends G-IMLOP,
which incorporates an anisotropic Gaussian noise model and
an anisotropic Kent noise model to account for measure-
ment errors in position and orientation, respectively [8]. The
likelihood function of G-IMLOP finds the y = (yp, ŷn) on
a target model shape, ψ , that maximizes the likelihood of
a match with x = (xp, x̂n). Assuming both position and
orientation errors are zero-mean, independent, and iden-
tically distributed, the match likelihood function for each
oriented point, x, transformed by a current similarity trans-
form, [a,R, t], is defined as [8]:

fmatch(x; y, �x, �y, κ, β, γ̂ 1, γ̂ 2, a,R, t)

= 1√
(2π)3|�| · c(κ, β)

·e− 1

2
(yp − aRxp − t)T�−1(yp − aRxp − t) − κ ŷnTRx̂n

+β

((
γ̂ 1

TRx̂n
)2 −

(
γ̂ 2

TRx̂n
)2)

, (1)

where � = R�xRT + �y, �x and �y are the covariance
matrices representing themeasurement noise associatedwith
x and y, κ = 1

σ 2 is the concentration parameter of the orienta-
tion noise model, where σ is the SD of orientation noise, and
β = e κ

2 controls the anisotropyof the orientationnoisemodel
along with γ̂ 1 and γ̂ 2, which are the major and minor axes
that define the directions of the elliptical level sets of theKent
distribution on the unit sphere [8,29]. ŷn, γ̂ 1, γ̂ 2 are orthog-
onal, and e ∈ [0, 1] is the eccentricity of the noise model.

At each iteration, correspondences are computed by min-
imizing the negative log likelihood of fmatch [41] for each
current inlier. The main difference in the correspondence
phases of G-IMLOP and GD-IMLOP is that GD-IMLOP

computes matched points on the current deformed shape
[41]. Using the current inliers, both the position and orienta-
tion noise parameters are updated using the residual match
errors. The covariance of position noise is updated by the
mean square distance between the inlying matches divided
by the spatial dimensionality [37]. The concentration param-
eter,κ , of orientation noise is updated using an approximation
to its maximum likelihood estimate [3,29]:

κ ≈ R̄(3 − R̄)

1 − R̄2
. (2)

R̄ evaluates the weighted sum of the position and orienta-
tion terms used to estimate κ , weighted by a user-defined
parameter, w [6]:

R̄ = 1 − w

n

ndata∑

i=1

ŷTniRx̂ni + w

α

ndata∑

i=1

ỹT piRx̃pi ,

where α =
ndata∑

i=1

∥∥ỹpi
∥∥ ∥∥Rx̃pi

∥∥ ,

x̃pi = xpi − 1

ndata

ndata∑

i=1

xpi and ỹpi = ypi − 1

ndata

ndata∑

i=1

ypi .

(3)

ndata is the number of inlying data points, xi , and position
and orientation terms are equally weighted using w = 0.5.
Estimating κ based on orientation match errors alone can
progressively overestimate κ since it is often possible to find a
nearly perfect orientation match for closed shape models [6].
Including position data prevents κ from growing too large.

Finally, inliers are updated based on the current set of cor-
respondences.Under the assumption of generalizedGaussian
noise, the squareMahalanobis distance is approximately dis-
tributed as a Chi-square (χ2) distribution with 3 degrees of
freedom (DOF) [8]. Therefore, a match is labeled an outlier
if this distance exceeds the value of a χ2 inverse cumulative
density function (CDF) with 3 DOF at some probability p.
That is, for any corresponding x and y, if

(yp − aRxp − t)T�−1(yp − aRxp − t) > chi2inv(p, 3),

(4)

then that match is an outlier. We set p = 0.95 [8]. Matches
that are not rejected as outliers using this test are evaluated
for orientation consistency. Here, a match is an outlier if
ŷnTRx̂n < cos (θthresh), where θthresh = 3σcirc and σcirc is the
circular SD computed using the mean angular error between
all correspondences.

Matches that pass these two tests are inliers, and a regis-
tration between these inliers is computed by minimizing the
following cost function with respect to the transformation
and shape parameters [41]:
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T = argmin
[a,R,t],s

(
1

2

ndata∑

i=1

(
(Tssm(ypi ) − aRxpi − t)T�−1(Tssm(ypi )

−aRxpi − t)
)

+
ndata∑

i=1

κi (1 − ŷTniRx̂ni ) −
ndata∑

i=1

βi

((
γ̂ 1i

TRTŷni
)2

−
(
γ̂ 2i

TRTŷni
)2) + 1

2

nm∑

j=1

∥∥s j
∥∥2
2

)
. (5)

The first term in Eq. 5 minimizes the Mahalanobis dis-
tance between the positional components of correspon-
dences, xpi and ypi . Tssm(·) is a transformation, Tssm(ypi ) =∑3

j=1 μ
( j)
i Tssm(v( j)

i ), that deforms the matched points, yi ,
based on the current s deforming ψ , Tssm(vi ) = v̄i +∑nm

j=1 s jw
(i)
j [41].μ( j)

i are the 3 barycentric coordinates that
describe the position of yi on a triangle on ψ [41]. The sec-
ond and third terms minimize the angular error between the
orientation components of corresponding points, x̂ni and ŷni ,
whilemaintaining the anisotropy in the orientation noise. The
final term minimizes the shape parameters to find the small-
est deformation required to modifyψ to fit the data points, xi
[41]. s is initialized to 0, meaning the registration begins with
the statisticallymean shape. This objective function (Eq. 5) is
optimizedusing a constrainednonlinear quasi-Newton-based
optimizer, where the constraint ensures that each s is within
±3 SDs, since this interval explains 99.7% of the population
variance.

Once the algorithm has converged, a final set of tests is
performed to assess the confidence in the computed registra-
tion. For position components, this is similar to the test for
outlier rejection, except now the sum of the square Maha-
lanobis distance over all sample points is compared against
the value of a χ2 inverse CDF with 3ndata DOF [8]; i.e.,
confidence in a registration degrades if

Ep =
ndata∑

i=1

(ypi − aRxpi − t)T�−1(ypi − aRxpi − t)

> chi2inv(p, 3ndata) (6)

for increasing p. If a registration is successful according to
Eq. 6, it is further tested for orientation consistency using a
similarχ2 test by approximating theKent distribution as a 2D
wrapped Gaussian [29]. Registration confidence degrades if

Eo =
ndata∑

i=1

⎡

⎢⎣
cos−1 (ŷni

TRx̂ni )

sin−1 (γ̂ 1i
TRTŷni )

sin−1 (γ̂ 2i
TRTŷni )

⎤

⎥⎦

T ⎡

⎣
κi 0 0
0 κi − 2βi 0
0 0 κi + 2βi

⎤

⎦

×
⎡

⎢⎣
cos−1 (ŷni

TRx̂ni )

sin−1 (γ̂ 1i
TRTŷni )

sin−1 (γ̂ 2i
TRTŷni )

⎤

⎥⎦ > chi2inv(p, 2ndata) (7)

for increasing p, since ŷni must align with x̂ni , but remain
orthogonal to γ̂ 1i and γ̂ 2i . In [40], p was empirically set
to 0.95 in both Ep and Eo tests for very confident success
assignment based on simulated experiments. Confidence in
registration success decreased for higher values of p. How-
ever, these thresholds were not evaluated in other simulated
experiments, but directly used to assign confidence to regis-
trations computed using in vivo clinical data where ground
truth was not available for validation. In this paper, p will
be chosen empirically in a simulated experimental setup and
then evaluated in increasingly realistic or difficult simulated
experiments and finally on in vivo clinical data.

Experimental results and discussion

Experiments are conducted using two types of data in order
to evaluate this method. The first is simulated data where
ground truth is known, while the second is in vivo clinical
data where ground truth is not known. Registrations using
GD-IMLOP are computed using different number of modes.
At 0 modes, this algorithm is essentially G-IMLOP with an
additional scale component in the optimization. In all simu-
lated experiments,weperform leave-one-out validationusing
shape models of the right nasal cavity (Fig. 1) extracted from
53 CTs.

For the purpose of this study, a registration is consid-
ered successful if the total registration error (tRE), computed
using theHausdorff distance (HD) between the left-out shape
and the estimated shape transformed to the coordinate frame
of the registered points, is below 1mm. The success or failure
of the registrations is compared to the outcome predicted by
our algorithm. This comparison will yield different results
if the ground truth threshold of 1mm is changed. We also
compute the total shape error (tSE) as the HD between the
left-out and estimated shapes in the same coordinate frame
to evaluate errors in reconstruction.

Before describing each experimental setup, we would like
to establish some expectations. Figure 2 shows the probabil-

Fig. 1 Endoscope inserted into
the right nasal cavity
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Fig. 2 Although the PDFs ofχ2-distributionswith smaller DOF are not
very heavy-tailed (left), they become increasingly heavy-tailed as the
DOF increases (note the y-axis values for the middle and right figures).

For 1000 sample points, Eo would be evaluated against aχ2-distribution
with 2000 DOF (middle) and Ep against that with 3000 DOF (right),
both of which have heavy-tailed PDFs

ity density functions (PDFs) of χ2-distributions with large
DOF, such as we expect to see in our experiments. These
PDFs are very heavy-tailed. Therefore, we expect the values
of p to be large, i.e., closer to 1, since p is the value of the
χ2 CDF at Ep or Eo with the appropriate DOF. That is, p
tells us the probability that the χ2-distribution with 3ndata
or 2ndata DOF will take a value less than or equal to Ep or
Eo, respectively. This also implies that we want the lower
values of p to allow few registrations that our algorithm is
extremely confident about into the class of successful regis-
trations. As p increases, the number of registrations labeled
successfulwill increase and sowill the likelihoodof introduc-
ing errors. Therefore, confidence in the computed registration
will decrease as p increases with registrations rejected as
failed at p = 1.

Establishing p

The first experiment using simulated data is used to establish
the values of p that will be associated with varying levels of
confidence. In this experiment, we want to introduce as few
ambiguities as possible so that we can confidently establish
the values of p. We sampled 1000 points uniformly from the
left-out nasal cavity mesh. Since the 53 CT dataset had an
isotropic resolution of 1 × 1 × 1mm3, isotropic noise with
1 × 1 × 1mm3 SD was added to the position component of
the sampled points. Additionally, anisotropic noise with 20◦
SD and e = 0.5 was added to the orientation component.
A rotation and translation sampled from the intervals [0, 9]◦
and [0, 15]mm, respectively, were applied to these points.
Two registrations per left-out shape were computed using
GD-IMLOP assuming the same noise as in the generated
sample points. nm ∈ {0, 5, 10, . . . , 50} modes are used in
this experiment, but in all other experiments, we use nm ∈
{0, 10, 20, . . . , 50} modes.

GD-IMLOP produced submillimeter registrations and
shape estimations as long as nm > 0 modes were used
(Figs. 3a, 6). The mean TRE is highest at 0 modes since
the mean shape cannot deform to fit the sample points, lead-
ing to suboptimal matches and, therefore, registration. We
do not compute a tSE at 0 modes since patient shape is not
estimated at 0 modes. As the number of modes increases,
the mean tRE and tSE show steady decline. Now, we want to
evaluate whether our confidence criteria can accurately iden-
tify these successful registrations. Success or failure labels
are assigned to each registration if they pass both the Ep

and Eo tests at different values of p. These labels are com-
pared against ground truth, which is established as described
in the “Experimental results and discussion” section. The
ROC (Fig. 3b) and precision-recall (Fig. 3c) curves show, as
we expected, that few registrations pass our tests for lower
values of p. As p increases, more registrations pass these
tests. However, no failed registrations are labeled successful
until p increases to 0.99999999. Finally, we observe that the
tRE and tSE for registrations classified as successful at these
values of p increase as p increases (Fig. 3d). Therefore, we
can establish that our confidence in a successful registration
decreases as p increases, culminating in a rejection at p = 1.

Simulated data without outliers

In the following experiments, we will try to simulate more
realistic scenarios and use the values of p established in
the previous section to assign confidence to the registra-
tions computed. These assignments will be evaluated against
ground truth. In this experiment, 3000 points were sampled
from the section of the left-out mesh that would be visi-
ble to an endoscope inserted into the nasal cavity (Fig. 6a).
Anisotropic noise with SDs 0.5 × 0.5 × 0.75mm3 and 10◦
with e = 0.5 was added to the position and orientation
components of the points, respectively, since this produced
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Fig. 3 Establishing p: submillimeter mean tRE and tSE for nm > 0 (a), ROC (b) and precision-recall (c) curves for increasing p, and a steady
increase in errors as confidence in registration degrades with increasing p (d)

realistic point clouds compared to in vivo data with higher
uncertainty in the z-direction. A rotation, translation, and
scale are applied to these points in the intervals [0, 10]mm,
[0, 10]◦, and [0.95, 1.05], respectively. No outliers are added
in this experiment.However, since in a real scenario, the exact
noise in the data is not known, GD-IMLOP makes slightly
more generous noise assumptions with SDs 1 × 1 × 2mm3

and 30◦ (e = 0.5) for position and orientation noise, respec-
tively. Scale optimization is restricted to within [0.9, 1.1].

Themean tRE and tSE produced byGD-IMLOP are again
below 1mm for nm > 0, albeit higher than those produced
in the previous experiment, as is expected due to the added
unknowns (Fig. 4a). tSE is lower in regions closer to where
points are sampled from (Fig. 6c) and grows aswemove away
from these regions. These errors also affect our confidence
assignment with failed registrations classified as successful
by our criteria at a slightly lower value of p than in the previ-
ous experiment at 0.9999 (Fig. 4b). This is also reflected by
the lower precision values (Fig. 4c) at corresponding p val-
ues compared to the previous experiment (Fig. 3c). However,
the average tRE of the three false positives at p = 0.9999
is 1.03 (±0.05)mm which agrees with the somewhat low
confidence implied by p = 0.9999 [40]. Finally, there is a

gradual increase in tRE and tSE for registrations classified as
successful with increasing values of p, culminating in a dras-
tic increase at p = 1 indicated by the large standard deviation
(Fig. 4d), meaning that most failed registrations are rejected.

Simulated data with 10% outliers

This experiment is set up similarly to the experiment in the
previous section, except that 10% of the simulated samples
are randomly chosen to be outliers. Outliers are added by
offsetting some of the generated samples’ positions and ori-
entations randomly in the interval [5, 10]mm and [5, 10]◦,
respectively.

The main similarity that results from this experiment have
with results from the previous two is in the submillimeter
mean tRE and tSE for nm > 0 (Fig. 5a). Again, the tSE is
lower within the nasal cavity since points were sampled from
this region and grows larger away from this region (Fig. 6d).
However, the success classification in this experiment is dif-
ferent from our expectations. Even for small values of p, the
number of successful registrations classified as successful is
high compared to the previous two experiments, as indicated
by the high true positive or recall rate in Fig. 5b ,c. Further,

123



International Journal of Computer Assisted Radiology and Surgery (2019) 14:1495–1506 1501

Fig. 4 Simulated data without outliers submillimeter mean tRE and tSE for nm > 0 (a), ROC (b) and precision-recall (c) curves for increasing p,
and a slow increase in errors as confidence in registration degrades with increasing p (d)

the false-positive rate is also higher at corresponding values
of p compared to the previous two experiments, meaning
that more failed registrations are classified as successful at
all values of p (Fig. 5b). This also leads to a drop in preci-
sion at each p (Fig. 5c), although the drop is small due to the
large number of successful registrations compared to failed
registrations. Finally, the average tRE and tSE for registra-
tions classified as successful with increasing p show gradual
increase with large standard deviations at all values of p
(Fig. 5d) due to the presence of misclassified failed registra-
tions at each p. This is also clear from the smaller standard
deviation at p = 1 (Fig. 5d) compared to the previous exper-
iment (Fig. 4d) since not all failed registrations fell into this
category.

Since the addition of outliers in our sampled points was
the only difference between the setup for Exps. 4.2 and 4.3,
we evaluate how well our algorithm was able to detect and
exclude these outliers. We observed that our χ2 confidence
tests were performed on an average 2978 inlying sample
points out of 3000. That is, on average, our algorithm was
only able to detect about 0.73 (±3.21)% of the 10% outliers
that were introduced in the sample points. Therefore, the
final noise parameter estimation performed by our algorithm

includes on average 278 outliers. These outliers can cause
the noise covariance estimates to be higher than the actual
noise in the inliers, leading to lower κ estimates and, there-
fore, also lower Eo estimates. This allows a large percentage
of successful registrations to be correctly classified even at
lower values of p and also allows errors to be introduced.

In order to improve the reliability of our confidence assign-
ment in realistic scenarios, our registration algorithm must
perform more robust outlier detection. The p = 0.95 thresh-
old used for outlier detection, as has been done in prior work
[8], is likely too high. Ifχ2 tests are used for outlier detection,
then the choice of p needs to be thoroughly evaluated.

In vivo clinical data

For the in vivo experiment, we collected anonymized endo-
scopic videos of the nasal cavity from consenting patients
under an IRB approved study. Dense point clouds were
produced from single frames of these videos using a modi-
fied version of the learning-based photometric reconstruction
technique by [34]. We use a self-supervised method that uses
structure from motion (SfM) points [26] and relative camera
motion to train aSiameseneural network to predict depth esti-
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Fig. 5 Simulated data with 10% outliers submillimeter mean tRE and tSE for nm > 0 (a), ROC (b) and precision-recall (c) curves for increasing
p, and a very slow increase in errors as confidence in registration degrades with increasing p (d)

Fig. 6 a An example of points (green) sampled from within the nasal
cavity. This rendering shows a view from the outside of the right nostril
looking into the right nasal cavity at the inferior turbinate. Per vertex
tSE for shapes reconstructed using nm = 50 plotted on the mean right
nasal cavity mesh: b tSE is low throughout the reconstructed shape

since points were sampled uniformly from the entire left-out shape in
the baseline experiment (Establishing p); tSE is low inside the nasal
cavity (red arrow) where points were sampled from for both the exper-
iment with c 0% and d 10% outliers, but grows larger away from this
region

mates at every pixel of a given frame [28]. Point clouds from
different nearby frames in a sequence were aligned using
the relative camera motion from SfM. Small misalignments

due to errors in depth or relative camera motion estima-
tion were corrected using G-IMLOP with scale to produce
a dense reconstruction spanning a large area of the nasal
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Fig. 7 Eo for all in vivo
registrations plotted for each
video sequence. Per sequence,
from left to right, the data points
indicate confidence scores
achieved using
nm ∈ {0, 10, 20, 30, 40, 50}
modes. Data points are colored
according to the value of p at
which each registration passed
the χ2 test. Black data points
indicate rejected registrations
that failed the χ2 test at p = 1

passage. Deformable registrations are then computed using
GD-IMLOP with 3000 points sampled uniformly from this
dense reconstruction, assuming noisewith SDs 1×1×2mm3

and 30◦ (e = 0.5) for position and orientation data, respec-
tively, and with scale and shape parameter optimization
restricted to within [0.7, 1.3] and ±1 SD, respectively. Reg-
istrations are computed using nm ∈ {0, 10, 20, 30, 40, 50}
modes.

All registrations run with 0 modes terminated at the maxi-
mum iteration threshold of 100,while those runusingnm > 0
modes converged at an average 10.36 iterations in an average
26.03 seconds. Figure 7 shows registrations that were com-
puted with increasing number of modes from left to right
for each sequence plotted against Eo. The rigid registrations
(using 0 modes) for sequences 1, 3, and 5 did not pass any
of the tests using Ep and are not plotted. The average resid-
ual error of these registrations was 3.1 (±2.17)mm. These
high residual errors are unsurprising since the average resid-
ual error produced by our algorithm is simply the average
Ep over all inliers. Many of the remaining registrations fail
the Eo tests (Fig. 7). The mean residual error of these reg-
istrations was 0.74 (±0.18)mm. These low errors are not
expected to lead to low Eo since Eo is entirely dependent
on the alignment of the orientations. The rigid registration
computed for sequence 4 and all deformable registrations in
sequence 5 fell below the χ2 threshold at p = 0.50 with
a mean residual error of 0.83 (±0.07)mm. Although these
errors are higher than those from the registrations rejected by
Eo, this can be explained by the fact that point sets can often
achieve good positional alignment without good orientation

alignment. However, if such registrations are excluded, it is
possible to end up with registrations where positional align-
ment is slightly worse but orientation alignment is better.
Sequence 4 registration using 30 modes falls below the χ2

threshold at p = 0.9999withmean residual error of 0.72mm
while the remaining sequence 4 registrations along with the
sequence 1 registration using 50 modes pass the χ2 test at
p = 0.999999withmean residual error of 0.74 (±0.04)mm.
Figure 8 shows a qualitative evaluation of the registration and
reconstruction produced for sequence 1 using 50 modes. The
data points reconstructed from video (white) appear to align
well with the reconstructed patient shape, and the recon-
structed shape (right) resembles the anatomy in the video
frame (left).

Conclusion

We show that GD-IMLOP is able to produce submillime-
ter registrations and reconstructions with simulated data and
assign confidence to these registrations. Although the confi-
dence assignment deteriorated in the presence of outliers, we
show that this was because GD-IMLOP was unable to find
and reject a majority of the outliers. GD-IMLOP was also
able to compute submillimeter registrations on in vivo clini-
cal data and assign confidence to these registrations. Further,
it can accurately predict the anatomy where video data are
available (Fig. 6).

In the future, we hope to learn statistics from thousands
of CTs to better cover the range of anatomical variations.
We will also work on improving outlier rejection so that the
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Fig. 8 Left: one of the frames from sequence 1 of nasal endoscopy
video. Right: visualization of the final registration and reconstruction
computed using 50 modes. The patient anatomy in video (left) and

the anatomy estimated using GD-IMLOP (right) appear similar, and
the points from video (white) appear to align well with the estimated
anatomy (right)

effect of outliers on both the registration as well as confi-
dence assignment can be minimized. Another step forward
would be to learn to correlate the bimodal distribution of con-
fidence scores Ep and Eo with the tRE in order to predict a
distribution of tREs that are most likely to occur given our
confidence scores. This removes our current reliance on1mm
as threshold for ground truth success label. This is important
since registration accuracy requirements change based on
location. For instance, this threshold can be higher near the
opening of the nasal cavities since critical structures are not
nearby. However, closer to the ethmoid bone which separates
the nasal cavities and sinuses from the brain, this threshold
should bemuch lower than 1mm. This threshold also broadly
affects our results. For instance, if we changed this thresh-
old to 1.5mm, our algorithm does not make any mistakes
in any of our simulated experiments. Further, additional fea-
tures like contours can also be used in addition to position
and orientation data, as in [10], to further improve registra-
tion and to add an additional test to evaluate the success of the
registration based on the quality of contour alignment. With
these improvements along with more accurate reconstruc-
tions from video, it may be possible to extend this approach
for use in place of CTs during endoscopic surgeries and fur-
ther reduce patient expose to radiation.
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