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Abstract

We present a latent hierarchical structural learning

method for object detection. An object is represented by

a mixture of hierarchical tree models where the nodes rep-

resent object parts. The nodes can move spatially to al-

low both local and global shape deformations. The models

can be trained discriminatively using latent structural SVM

learning, where the latent variables are the node positions

and the mixture component. But current learning methods

are slow, due to the large number of parameters and latent

variables, and have been restricted to hierarchies with two

layers. In this paper we describe an incremental concave-

convex procedure (iCCCP) which allows us to learn both

two and three layer models efficiently. We show that iCCCP

leads to a simple training algorithm which avoids complex

multi-stage layer-wise training, careful part selection, and

achieves good performance without requiring elaborate ini-

tialization. We perform object detection using our learnt

models and obtain performance comparable with state-of-

the-art methods when evaluated on challenging public PAS-

CAL datasets. We demonstrate the advantages of three layer

hierarchies – outperforming Felzenszwalb et al.’s two layer

models on all 20 classes.

1. Introduction

Object detection is an important task in computer vision

which has made great use of learning [14]. Recent progress

includes: (i) learning part-based models [3, 10, 7, 15, 2], (ii)

learning appearance features [13], and (iii) learning context

[11]. Other recent representative work includes [6].

This paper focusses on learning hierarchical models

with deep structure. The success of “shallow structures”

with two layers [15, 7] suggests that we can make further

progress by extending to “deep structures” which should

give richer descriptions of shape and appearance. But this

extension is not straightforward for the following two is-

sues:

1. What are good part structures? Felzenszwalb et al.

[7] describe a layer-wise training procedure which requires

Figure 1. (a) A 3-layer tree model. The structure has three layers

with nodes in simple grid layouts, i.e. 1 × 1, 3 × 3 and 6 × 6. (b)

A reference template without part displacement (no deformation).

Blue rectangle is the bounding box of the root node. Yellow dots

indicate the center positions of 9 parts at the 2nd layer. Purple

dots are the centers of 36 parts at the bottom layer. (c,d) examples

of part displacement. Yellow grids connecting the 9 intermediate

nodes show the deformation at the 2nd layer. Purple lines which

connect the four child nodes to their parent node at the 2nd layer

show the local deformation at the bottom layer.

careful part selections and model initializations. This multi-

stage training method is effective for shallow (2 layer) struc-

tures, but it seems hard to scale up to more layers without

tuning the parameters, such as the number of parts at the

deeper layers.

2. How to learn a deep structure efficiently? A deep

structure has many more features and latent variables than

a shallow structure. This means that we have to learn more

parameters which requires more training data. The train-

ing time also increases due to the amount of training data

and the greater amount of computations required (e.g., we

need to compute inner products for more features). There-

fore, learning a deep structure becomes more computation-

ally challenging.

In this paper we show that simple part structures are suf-

ficient to obtain state of the art performance. We will ar-



gue, respectfully disagreeing with [7], that the choice of

part structure does not significantly affect the performance

although it may affect the convergence rate of learning. In

fact our model is a simple extension of the 2-layer model

used in [7]. In this paper, an object class consists of sev-

eral prototype templates from different viewpoints each of

which is represented by a 3-layer tree-structure model. The

structure of the model is shown in figure 1. The first layer

has one root node which represent the entire object. The

root node has 9 child nodes at the second layer in a 3 by

3 grid layout. Each node at the second layer has 4 child

nodes at the third layer which contains 36 nodes in a 6 by 6

grid layout. The numbers of layers and nodes are the same

for different object classes and views. We will show that

this simple structure leads to a meaningful model with good

performance.

We can train deep structure models efficiently by mod-

ifying a recent approach to latent structural SVM learning

[16]. This requires minimizing an objective function which

is non-convex, but which can be expressed as the differ-

ence of two convex functions. Yu and Joachims apply the

the concave-convex procedure (CCCP) [17] to this objec-

tive function to derive an algorithm that is guaranteed to

converge to a local minima. The algorithm proceeds in two

alternating steps, analogous to the EM algorithm: (1) esti-

mate the latent variables using the current estimates of the

model parameters. (2) estimate the model parameters using

standard structural SVM learning (treating the estimated la-

tent variables as groundtruth). But this method is not effi-

cient enough for deep structures because of the large num-

ber of parameters and training data. Hence we developed an

incremental concave-convex procedure (iCCCP) which se-

quentially adds training data at each iteration. This greatly

reduces the training cost and enables us to learn deep struc-

tures efficiently. Overall, iCCCP is a simple training algo-

rithm which learns multi-layer parameters simultaneously,

avoiding complicated multi-stage layer-wise training, and

does not require elaborate initialization.

In summary, this paper draws three conclusions: (1)

Deep structures are better than shallow structures (3-layers

outperform 2-layers on all 20 object classes), (2) Simple hi-

erarchical structure are able to achieve good performance.

(3) iCCCP learning is simple and efficient and enables us to

learn multi-layer parameters simultaneously.

2. Background: Structural SVM and Latent

Variables

Suppose we are given a set of training samples

(x1, y1, h1),...,(xN , yN , hN) ∈ X × Y × H where x is an

image patch, y is a label of object class. h = (V, ~p) where

V is a label of viewpoint, and ~p is the position of object

parts. The task of structural SVM learning is to learn a dis-

criminative function of the form:

Fw(x) = argmax
y,h

[w · Φ(x, y, h)] (1)

where Φ is a joint feature vector that describes the relation-

ship between input x and structured output (y, h), with w
being the parameter vector. Φ have two forms: (i) Appear-

ance features ΦA(x, y, h) connect image features x to ob-

ject classes y, viewpoints V and object parts ~p. (ii) Shape

features ΦS(y, h), which are not related to x, capture the

shape deformation of object parts. The optimization prob-

lem of computing this argmax is typically referred to as the

“inference” problem.

The standard structural SVM problem assumes that the

structure of h is given and fixed, i.e. the number of parts are

known. To train structural SVMs we solve the following

convex optimization problem [12]:

min
w

1

2
||w||2 + C

N
∑

i=1

[

max
y,h

[w · Φi,y,h + Li,y,h] − w · Φi,yi,hi

]

(2)

where C is a fixed penalty parameter, Φi,y,h = Φ(xi, y, h)
and Li,y,h = L(yi, y, h) is the loss function. For object

detection problem, L(yi, y, h) = 1 if yi = y, 0 if yi 6= y.

This optimization problem can be solved efficiently using

cutting-plane method [12]. A recent successful application

to computer vision is human body parsing [18].

If h is not labeled in the training set, then we need to

solve a latent structural SVM problem:

min
w

1

2
||w||2

+ C

N
∑

i=1

[

max
y,h

[w · Φi,y,h + Li,y,h] − max
h

[w · Φi,yi,h]

]

(3)

This optimization problem is non-convex. Yu and

Joachims [16] offered a general solution to finding a lo-

cal optimum using the CCCP concave-convex Procedure

[17]. We note that [7] explored an alternative approach to

this problem by transforming the structural learning prob-

lem into a standard binary SVM learning problem. In our

implementation, we follow Yu and Joachims’s strategy but

modify CCCP to iCCCP.

3. Latent Hierarchical Structural Learning

3.1. Hierarchical Structure, Latent Variables and
Features

An object class consists of two prototype templates from

two different views each of which is represented by a 3-

layer tree-structure model. The structure of the model is



Figure 2. Some models (appearance only) learnt from the PASCAL 2007 dataset. The first 2 rows are the car models from two views and

the last row is a horse model. Three columns show the weights in each orientation of the HOG cells at the 1st (1 × 1 grid), 2nd (3 × 3

grid) and 3rd (6 × 6 grid) layers, respectively. Each cell consists of 8 × 8 pixels. The models look semantically meaningful. The weights

along the object boundary are high. The features at different layers capture object appearance in a coarse-to-fine way. The features at lower

levels capture more detailed appearance (e.g. the horse legs at the 3rd layer look brighter.)

shown in figure 1. The first layer has one root node which

represent the entire object. The root node has 9 child nodes

at the second layer in a 3 by 3 grid layout each of which

represents one ninth of an object. Each node at the second

layer has 4 child nodes at the third layer which contains 36

nodes in a 6 by 6 grid layout. There are 46 (1+3×3+6×6)
nodes in total. The numbers of layers and nodes are the

same for different object classes and views. But their aspect

ratios may be different. Each tree model is associated with

latent variables h = (V, ~p). V is the index of viewpoint and

~p = ((u1, v1), (u2, v2), ..., (u46, v46)) encode the positions

of all nodes. For an object class, let y = +1 denote object

and y = −1 denote non-object. Let a = 1..46 be the index

of nodes. b ∈ Ch(a) indexes the child nodes of node a. The

feature vector is defined as follows:

Φ(x, y, h) =

{

(ΦA(x, h), ΦS(h)) if y = +1
0 if y = −1

(4)

The ΦA(x, h) are the appearance features which contain

HOG [5] descriptors ΦA(x, ~pa) for all nodes. We followed

the implementations of [7] to calculate HOG descriptors.

Figure 2 shows the weights of HOG descriptors at different

layers. The image patch corresponding to the entire object

is represented by W×H cells each of which are 8×8 pixels.

The HOG features for each cell represent the local gradient

information which consists of 31 features including 9 con-

trast sensitive features, 18 insensitive features and 4 sums

over the 9 contrast insensitive orientations. The length of

the features ΦA(x, ~p1) for the root node is W × H × 31.

The 2nd layer has 2W × 2H cells with two times resolu-

tion. The length of ΦA(x, ~pa) for each node at this layer is
2
3W × 2

3H × 31. The bottom layer has the same resolution

as the 2nd layer. The ΦA(x, ~pa) for the 3rd layer is of length
2
6W × 2

6H ×31. There are 9×W ×H ×31 features for all

46 nodes. For a typical size with W = 10, H = 5 (see row

2 in figure 2), our 3-layer model has 13,950 HOG features

in total.

The ΦS(h) are shape features ΦS(~pa, ~pb), ∀a, b ∈
Ch(a), which encode the parent-child pairwise spacial

relationship. More precisely, the shape features for a

parent-child pair (a, b) are defined as ΦS(~pa, ~pb) =
(∆u, ∆v, ∆u2, ∆v2) where (∆u, ∆v) is the displacement

of node b relative to its reference position which is deter-

mined by the position of the parent node a. Our 3-layer

model has 180 (4 × 9 + 4 × 36) shape features in total.

Obviously, our 3-layer structure is deeper than the shal-

low structure used in [7] while the HOG and shape features

are the same as [7]. Unlike [7], the topology (part organiza-

tion) of our model is predefined by hand to be identical for

all object classes and views. We will show that this arbitrary

(trivial) design does not affect the performance of the mod-

els while its simplicity avoids the need to carefully initialize

the model structures.

3.2. Detection: Dynamic Programming

Suppose the parameters w are given. Given an im-

age patch (subwindow), the detection task is to find a

class label and part locations (y∗, h∗) with the best score:

(y∗, h∗) = argmaxy,h[w · Φ(x, y, h)]. The models for two

views V = 1, 2 are independently evaluated. To find a best



~p, the position ~p1 = (u1, v1) of the root is first located by

scanning all subwindows at different scales of the image

pyramid. Given a location (u1, v1) of the root node, the

best configuration ~p of the remaining 45 parts is obtained

by dynamic programming which is a recursive procedure:

F (x, ~pa) =
∑

b∈Ch(a)

max
~pb

{F (x, ~pb) + w · ΦS(~pa, ~pb)}

+w · ΦA(x, ~pa) (5)

where F (x, ~pa) is the max score of a subtree with node

a being the root. The boundary condition is F (x, ~pa) =
ΦA(x, ~pa) if a is a leaf node. This recursive form is equiv-

alent to the discriminative function in equation 1, i.e. given

a view V and y = +1, the score of the root F (x, ~p1) =
max~p w · Φ(x, ~p).

The bounding box determined at position (u1, v1) of the

root node and the corresponding level of the image pyramid

is output as an object detection if the score F (x, ~p1) > 0
(note F (x, y) = 0 if y = −1).

3.3. Optimization: standard CCCP

Learning the latent hierarchical model can be formulated

as a learning problem defined in equation (3). This learning

problem can be written equivalently as [16]:

min
w

[

1

2
||w||2 + C

N
∑

i=1

max
y,h

[w · Φi,y,h + Li,y,h]

]

(6)

−

[

C

N
∑

i=1

max
h

[w · Φi,yi,h]

]

(7)

= min
w

{f(w) − g(w)} (8)

where f(w) are the first two terms (6) and g(w) is minus the

last term (7). Note f and g are both convex, but f(w)−g(w)
is not. The Concave-Convex Procedure (CCCP) gives an

algorithm which alternates the following two steps (see the

pseudo code in figure 3):

Step (1): find hyperplane qt such that −g(w) ≤
−g(wt) + (w − wt) · qt, ∀w

Step (2): Solve wt+1 = argminw[f(w) + w · qt]

The CCCP algorithm is guaranteed to converge to a local

minimum. Step 1 constructs a hyperplane that upper bounds

the concave part of the objective −g, so that the optimiza-

tion problem solved at step 2 is convex.

Step (1) is performed by finding the best h∗: h∗

i =
argmaxh wt · Φi,yi,h. Then the hyperplane constructed is

qt = −C
∑N

i=1 Φi,yi,h
∗

i
. Step (2) is to solve minw[f(w) −

C
∑N

i=1 w · Φi,yi,h
∗

i
]. Substituting f(w) with the first two

terms in equation (7) enables us to rewrite this as:

min
w

1

2
||w||2 + C

N
∑

i=1

[

max
y,h

[w · Φi,y,h + Li,y,h] − w · Φi,yi,h
∗

i

]

(9)

This is a standard structural svm problem without latent

variables. The solution to this minimization can be found

by differentiation and expressed in form:

w∗ = C
∑

i,y,h

α∗

i,y,h∆Φi,y,h (10)

where ∆Φi,y,h = Φi,yi,h
∗

i
−Φi,y,h and the α∗ are obtained

by maximizing the corresponding dual function:

max
α

∑

i,y,h

αi,y,hLi,y,h

−
1

2
C

∑

i,j

∑

y,h,y′,h′

αi,y,hαj,y′,h′∆Φi,y,h · ∆Φj,y′,h′

(11)

This is a standard structural SVM dual problem. We use

the cutting plane method [1, 12] to optimize the objective

function in equation (11). The method creates a working

set sequentially and then estimate the parameter α on the

working set. More precisely, it seeks to create a work-

ing set for the first round training. We check all train-

ing examples (xi, yi, hi). If w · Φi,y∗,h∗ + Li,y∗,h∗ −
maxy′,h′ [w · Φi,y′,h′ + Li,y′,h′ ] > δ where (y∗, h∗) =
argmaxy,h[w ·Φi,y,h +Li,y,h], (xi, y

′, h′) are examples al-

ready in the working set, and δ is a tolerance parameter, the

working set is constructed by adding examples (xi, y
∗, h∗).

The working set procedure is similar to the hard examples

data mining used in [7]. It is easy to scan all positive train-

ing examples with bounding box groundtruth which limits

the search space of ~p in dynamic programming. But scan-

ning all subwindows in a large set of negative training im-

ages is very expensive. In the next subsection, we will in-

troduce a new algorithm to make large-scale training more

efficient.

When the working set has enough training samples

(when we reach a a fixed memory limit), we estimate the

parameters α on the working set. The optimization over the

working set is performed by Sequential Minimal Optimiza-

tion [9]. Then the algorithm proceeds to the next round, ex-

pands the working set and performs optimization over the

new working set. The optimal solution of wt at iteration t
is obtained after several rounds of working set construction

and training.

The solution wt is used as a starting point in a new

CCCP iteration, without having to reconstruct all the work-

ing set from scratch. After the CCCP algorithm converges

i.e. [f(wt) − g(wt)] − [f(wt−1) − g(wt−1)] < ǫ where ǫ



Instantiate t = 0.

Repeat t = t + 1;

1. Fill in latent variables:

h∗

i = argmaxh wt · Φi,yi,h

2. Solve the structural SVM problem (given h, es-

timate w): wt+1 = argminw f(w) − C
∑

i w ·
Φi,yi,h

∗

i

Until [f(wt) − g(wt)] − [f(wt−1) − g(wt−1)] < ǫ.
Figure 3. Standard CCCP algorithm.

is a threshold set by hand, we get the local minimum at w∗,

given in equation 10.

3.4. Incremental CCCP for Large Scale Training

Instantiate: t = 0; S = {xi, yi}
+ ∪ {xj , yj}

−, i =
1..N+, j = 1..n
Repeat t = t + 1

1. Fill in latent variables (xi, yi) ∈ S:

h∗

i = argmaxh wt · Φi,yi,h

2. Solve the structural SVM problem over S (given h,

estimate w):

wt+1 = argminw f(w) − C
∑

i w · Φi,yi,h
∗

i

3. S = S ∪ {xj, yj}
−, j = nKt−1 + 1, nKt−1 +

2, ..., nKt

Until [f(wt) − g(wt)] − [f(wt−1) − g(wt−1)] < ǫ.

Figure 4. Incremental CCCP (iCCCP) algorithm. {xi, yi}
+ and

{xj , yj}
− refer to the positive and negative training sets, respec-

tively. N+ is the size of the positive set.

In standard CCCP for latent structural SVM, a lot of

computation cost is spent at step 2 essentially finding hard

training examples by scanning all subwindows from a large

set of negative training images (e.g., 100 images which take

14 minutes to scan all subwindows in one round at 8 sec-

onds per image). We propose an incremental CCCP (iC-

CCP) algorithm to handle this issue. See the pseudo code

in figure 4. It is motivated by realizing that it is not nec-

essary to get optimal solutions at the early stage of CCCP

learning. iCCCP starts from a small number n = 30 (set

by hand) of negative images, learns w given the hard nega-

tive examples selected from 30 images and proceeds to up-

date w by incrementally adding more negative images into

the training set. The scaling factor K of new negative im-

ages is 1.15: iCCCP examines 30 negative images at the

1st iteration, 30 × 1.15 at the 2nd iteration, ..., and so on,

until it converges. The negative examples are scanned by

iCCCP simply in the order of image IDs labeled in the train-

ing dataset. iCCCP is able to achieve similar accuracy with

greatly reduced computational cost. For example, assum-

ing that standard CCCP needs 10 iterations in which CCCP

scans 100 negative images 10 times using 270 (10 × 27)

minutes, iCCCP reduces the cost by a factor of 6.54 (6.54 =
21.8× 30/100; 21.8 = 1 + 1.15 + 1.152 + ... + 1.159). We

will empirically compare the performance of iCCCP with

standard CCCP in section 4.4.

Note that for a 3-layer model, learning parameters w
with a length of 14,130 (13950+180) takes around two

times greater cost than learning a 2-layer model to calcu-

late the inner product. More parameters need more training

data (and time) to converge. The advantage of iCCCP over

standard CCCP appears to be more critical while learning

deep structures.

3.5. Implementation Details

The training-irrelevant implementations are identical to

[7]. The HOG features and shape features are the same. All

object classes are represented by two predefined templates.

The aspect ratios of the two templates are determined by se-

lecting two representative aspect ratios and sizes by count-

ing their histograms in the groundtruth. The weights w are

ensured to be symmetry. Since we focus on the comparisons

of models with different part structures, we do not use any

post-processing, such as bounding box prediction, rescor-

ing the classifiers using contextual information, etc. Our

framework differs from [7] in the learning algorithm:

Simple Initialization and Simultaneous Multi-Layer

Learning: [7] has a very complicated 3-stage layer-wise

training procedure which initializes appearance weights in

a coarse-to-fine way. They implemented a gradient decent

algorithm to learn the weights w, which requires careful

initialization. Instead, in this paper, learning a hierarchi-

cal model is performed by the iCCCP algorithm which does

not need a multi-stage training procedure and does not re-

quire weights initializations. iCCCP initializes the positions

~p of all nodes at three layers by setting them in a regular

grid layout without displacements ∆u = 0, ∆v = 0, and

then learn the weights w of all nodes at different layers si-

multaneously. This simple design does not require careful

initializations and pre-training of structures. In section 4.4,

we will empirically show that the part structures and the ini-

tiations do not prevent iCCCP from learning a good model.

Bias Terms in Structural Learning: The discrimina-

tive function Fw(x) = argmaxy,h[w · Φ(x, y, h)] does not

include the bias terms which appear in binary svm learning.

We introduce bias terms by,v to obtain w ·Φ(x, y, h) + by,v

by attaching extra constant terms Φb(y, v) = 10 for all

possible labels of (y, v), following [4]. The correspond-

ing weights wb are then by,v/10. These adjustments help

improve the performance. For more details, see [4]. ([7]

avoids this issue by transforming the structural learning

problem into a binary svm learning problem.)

Cutting Plane Method: We use the cutting plane

method to learn w. At each round, this method proceeds

by sequentially adding positive training examples together



with 500 negative examples, which violate the KKT con-

ditions, into a working set. The tolerance parameter is

δ = 10−6. After several rounds, the number of hard nega-

tive examples decreases exponentially.

Updating Latent Variables: At step (1) of the iCCCP

iterations, the states of latent variables (i.e. the positions

of all nodes) are restricted to ensure that the box of the root

overlaps with the groundtruth bounding box by at least 70%.

The positions of the child nodes are restricted to ensure the

child node overlaps with the corresponding reference box.

4. Experimental Evaluations

The PASCAL VOC 2007 dataset [8] was used for evalu-

ations. It is the latest version that test annotations are avail-

able. There are 20 object classes which consist of 10000

images for training and testing. We follow the experimental

protocols and evaluation criteria used in the PASCAL Vi-

sual Object Category detection contest 2007. A detection

is considered correct if the intersection of its bounding box

with the groundtruth bounding box is greater than 50% of

their union. We compute Precision-Recall (PR) curves and

score the average precision (AP) across a test set. All exper-

iments are performed on a standard computer with a 3Ghz

CPU. C is set to 0.005 for all classes. The detection time per

image is 8 seconds. The starting number of negative images

used in the iCCCP training is n = 30. The increasing rate

K is 1.15. It takes 25 hours (about 25 iCCCP iterations) to

train an object class with two mixture templates.

4.1. The detection results on the PASCAL dataset

Some detection results with a bounding box and the po-

sitions of 45 nodes are shown in figure 5. The models learnt

on the car and horse datasets are shown in figure 2. We

compared our approach with other representative methods

reported in the PASCAL VOC detection contest 2007 [8].

The comparisons in table 1 show that our 3-layer model out-

performs other methods in 13 categories and [7] on all 20

classes. The average APs per category are 0.296(us), 0.268

(UoCTTI[7]), 0.271 (UCI[6]), 0.275([10]) and 0.321 [13].

[10] and [13] are not listed in table 1 because both methods

rely on training multiple models. Our method is better than

[10] which seeks to rescore the detection hypotheses output

by [7]. They make use of more features and more complex

training algorithms. [13] is the only one that outperforms

our method by using more feature kernels. However, [13]

runs much slower (it takes 67 seconds to calculate complex

image feature kernels).

4.2. Deep is better than shallow

In table 1, we have shown that our 3-layer structure is

better than the 2-layer model (UoCTTI) used in [7] on all

Datasets UoCTTI L=2,Parts=9 L=2, Parts=36 L=3

Car .464 .501 .491 .513

Horse .436 .443 .443 .504

Table 2. Comparisons of models with 2-layer and 3-layer struc-

tures on the cat and horse datasets. “UoCTTI” reports the results

from [7]. “L=2,L=3” are our models with top 2 layers (9 parts

and 36 parts at the second layer) and complete 3 layers which are

trained by iCCCP algorithm.

object classes. In order to study how much gain is ob-

tained by deep structures, besides the 3-layer model (L=3)

introduced before, we also implemented three other 2-layer

models: our model with 9 parts (3×3) and 36 parts (6×6) at

the second layer, respectively, and the other 2-layer model

(UoCTTI) with 6 selected parts [7]. The comparisons of

these four models with different layers and parts are per-

formed on two object classes, cars and horses. Table 2

shows the average precisions of these four models. On the

car dataset, our 2-layer models (L=2) outperforms UoCTTI

by 0.037 and 0.027, respectively. The 3-layer model (L=3)

further improves the performance slightly by 0.012. On the

horse dataset, the 3-layer model easily outperforms other

three 2-layer models which perform similarly to each other.

By comparing the two models with 9 parts and 36 parts, it

is clear that simply adding more parameters/parts gives lit-

tle improvement in performance. But better performance is

obtained by adding the third level to the hierarchy. In con-

clusion, deep structures are better than shallow structures.

4.3. Part structures and Initializations

We also investigated the effect of different part struc-

tures and initializations. Three models are compared: 1)

the UoCTTI model (M=UoCTTI) using their initializations

(~p=UoCTTI); 2) the UoCTTI model using our trivial ini-

tializations (~p=0 means the displacements of all nodes are

zeros); 3) our 2-layer model (9 parts, M=O) with trivial ini-

tializations (~p=0). Two datasets (car and horse) are evalu-

ated. All models are learnt by the iCCCP algorithm. The

APs at different iterations of iCCCP are plotted in figure 6.

The model (M=UoCTTI, ~p=UoCTTI) achieve better perfor-

mance than the other two models in the early iterations, but

they all converge eventually to similar performance. The

two models (M=UoCTTI and M=O) with same trivial ini-

tializations (~p=0) start from same position. This shows that

different structures do not affect the performance when iC-

CCP has converged, but they may have different perfor-

mance if iCCCP has not performed enough iterations. The

results also suggest that the convergence of the iCCCP al-

gorithm is not very sensitive to the initialization.

4.4. Standard CCCP vs. iCCCP

Figure 7 compares the behaviors of standard CCCP and

iCCCP. Standard CCCP uses n = 100 negative images at



class aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

us .294 .558 .094 .143 .286 .440 .513 .213 .200 .193 .252 .125 .504 .384 .366 .151 .197 .251 .368 .393

UoCTTI .290 .546 .006 .134 .262 .394 .464 .161 .163 .165 .245 .050 .436 .378 .350 .088 .173 .216 .340 .390

UCI .288 .562 .032 .142 .294 .387 .487 .124 .160 .177 .240 .117 .450 .394 .355 .152 .161 .201 .342 .354

V07 .262 .409 .098 .094 .214 .393 .432 .240 .128 .140 .098 .162 .335 .375 .221 .120 .175 .147 .334 .289

Table 1. Performance Comparisons on the 20 PASCAL VOC 2007 challenge categories [8]. (us) refers to our 3-layer model. (UoCTTI)

reports the results from [7] without special post-processing. (UCI) [6] is a method using multi-object relationship. (V07) is the best result

for each category among all methods submitted to the VOC 2007 challenge. Our method outperforms the other methods in 13 categories.

Our 3-layer model is better than UoCTTI’s 2-layer model in all 20 categories. The average APs per category are 0.296(us), 0.268 (UoCTTI)

and 0.271 (UCI).

Figure 5. Some detection results from the PASCAL 2007 dataset. Each row contains several results of one class. Big rectangles are the

bounding boxes of the root nodes. Blue and green indicate two different views. Nine yellow dots are the centers of nodes at the 2nd layer.

Purple lines connect the parent-child pairs of nodes at the 2nd and 3rd layers. The yellow grids and purple lines show the deformations.
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Figure 6. Comparisons of different part structures and initializa-

tions. “M=UoCTTI” refers to [7]. “M=O” is our model with top

two layers. “p=UoCTTI”is using the initializations provided by

the pre-trained one-layer model in [7]. “p=0” means that the dis-

placements of all nodes are zeros. All models are learnt by iCCCP

algorithms.
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Figure 7. Comparisons of CCCP and iCCCP. Standard CCCP uses

100 negative images at each iteration. iCCCP starts from using 30

images and sequentially increases the set.

each iteration while iCCCP starts from using n = 30 neg-

ative images, incrementally adds extra 15% images at each

iteration and uses 105 (= 30× 1.159) images at the 10th it-

eration. CCCP achieves better APs at the beginning because

of accessing larger dataset, but CCCP and iCCCP converge

to similar positions while iCCCP greatly reduces the com-

putational cost as we discussed in section 3.4.

5. Conclusion

This paper describes a latent hierarchical structural

learning method for object detection. We represent objects

by mixture of hierarchical models with two or three layers.

We developed a simple incremental convex-concave proce-

dure (iCCCP) which is capable of learning deep three-layer

models efficiently without multi-stage layer-wise training

or elaborate initializations. The resulting object models are

comparable with state-of-the-art methods on the PASCAL

datasets. In particular, we show that models with deep struc-

ture outperform shallow structures and that simpler part

structures are sufficient to obtain strong results.
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