Boltzmann Machine

A.L. Yuille — draft in progress

Abstract

1. Introduction

The Boltzmann Machine (Hinton and Sejnowski) is a method for learning the weights of a probability distribution assuming that a subset of nodes (input nodes) are observed and the remainder are hidden.

Gibbs Distribution

The probability of the system is defined by a Gibbs distribution with energy

\[E(\vec{S}) = \frac{1}{2} \sum_{ij} \omega_{ij} S_i S_j \]

and distribution:

\[P(\vec{S}) = \frac{1}{Z} \exp\{-E(\vec{S})/T\}. \tag{1} \]

We divide the nodes into two classes \(V_o \) and \(V_h \), which are the observed (input) and hidden nodes respectively. We use \(\vec{S}_o \) and \(\vec{S}_h \) to denote the states of the observed and the hidden nodes respectively. The components of \(\vec{S}_o \) and \(\vec{S}_h \) are \(\{S_i : i \in V_o\} \) and \(\{S_i : i \in V_h\} \) respectively. Hence \(\vec{S} = (\vec{S}_o, \vec{S}_h) \).

Hence we can re-express the distribution over the states as:

\[P(\vec{S}_o, \vec{S}_h) = \frac{1}{Z} \exp\{-E(\vec{S})/T\}. \tag{2} \]

The marginal distribution over the observed nodes is

\[P(\vec{S}_o) = \sum_{\vec{S}_h} \frac{1}{Z} \exp\{-E(\vec{S})/T\}. \tag{3} \]

We assume that we can estimate a distribution \(R(\vec{S}_o) \) of the observed nodes (see more in a later section). Then the goal of learning is to adjust the weights \(\vec{\omega} \) of the model (i.e. the \(\{\omega_{ij}\} \)) so that the marginal distribution \(P(\vec{S}_o) \) of the model is as similar as possible to the observed model \(R(\vec{S}_o) \). This requires specifying a similarity criterion which is chosen to be the Kullback-Leibler divergence:

\[C(\vec{w}) = \sum_{\vec{S}_o} R(\vec{S}_o) \log \frac{R(\vec{S}_o)}{P(\vec{S}_o)} \tag{4} \]

We will discuss in a later section how this relates to the standard maximum likelihood criterion for learning distributions (it is effectively the same).

The Boltzmann Machine adjusts the weights by the iterative update rule:

\[\omega_{ij} \mapsto \omega_{ij} + \Delta \omega_{ij} \tag{5} \]
\[\Delta w_{ij} = -\delta \frac{\partial C}{\omega_{ij}} \]
\[\Delta w_{ij} = -\delta \frac{1}{T} \{ <S_i S_j>_{\text{clamped}} - <S_i S_j> \} \]

Here \(\delta \) is a small positive constant. The derivation of the update rule is given in a later section. The way to compute the update rule is described in the next section.

\(<S_i S_j>_{\text{clamped}}\) and \(<S_i S_j>\) are the expectation (e.g., correlation) between the state variables \(S_i, S_j\) when the data is generated by the clamped distribution \(R(\vec{S}_o)P(\vec{S}_h|\vec{S}_o)\) and by the distribution \(P(\vec{S}_h, \vec{S}_o)\) respectively. The conditional distribution \(P(\vec{S}_h|\vec{S}_o)\) is the distribution over the hidden states conditioned on the observed states. So it is given by \(P(\vec{S}_h|\vec{S}_o) = P(\vec{S}_h, \vec{S}_o)/P(\vec{S}_o)\).

The learning rule, equation (7), has two components. The first term \(<S_i S_j>_{\text{clamped}}\) is Hebbian and the second term \(<S_i S_j>\) is anti-Hebbian (because of the sign). This is a balance between the activity of the model when it is driven by input data (i.e. clamped) and when it is driven by itself. The algorithm will convergence when the equation (7), is zero.

What is the observed distribution \(R(\vec{S}_o)\)? In fact, we do not know \(R(\vec{S}_o)\) exactly and so we approximate it by the training data \(\{\vec{S}_o^\mu; \mu = 1, ..., N\}\). This is equivalent to assuming that

\[R(\vec{S}) = \frac{1}{N} \sum_{\mu=1}^{N} \delta(\vec{S}_o - \vec{S}_o^\mu) \]

(8)

(We return to this later when we show the relationship to maximum likelihood learning).

1.1. Estimating the \(<S_i S_j>\)

The main difficulty of the learning rule for the Boltzmann Machine is how to compute \(<S_i S_j>_{\text{clamped}}\) and \(<S_i S_j>\).

To do this, it is natural to use Gibbs sampling. Recall from earlier lectures that the stochastic update rule for neurons is performing Gibbs sampling – i.e. selecting a neuron \(i\) at random, and then sampling \(S_i\) from the conditional distribution \(P(S_i|\vec{S}_j)\).

By performing Gibbs sampling multiple times on the distribution \(P(\vec{S}_o, \vec{S}_h)\) we obtain \(M\) samples \(\vec{S}^1, ..., \vec{S}^M\). Then we can approximate \(<S_i S_j>\) by:

\[<S_i S_j> \approx \frac{1}{M} \sum_{a=1}^{M} S_i^a S_j^a \]

(9)

Similarly we can obtain samples from \(R(\vec{S}_o)P(\vec{S}_h|\vec{S}_o)\) (the clamped case) by first generating samples \(\vec{S}^1, ..., \vec{S}^M\) from \(R(\vec{S}_o)\) and then converting them to samples

\[\vec{S}_o^1, ..., \vec{S}_o^M \]

(10)

where \(\vec{S} = (\vec{S}_o^i, \vec{S}_h^i)\), and \(\vec{S}_h^i\) is a random sample from \(P(\vec{S}_h|\vec{S}_o)\) (performed by Gibbs sampling).

How do we sample from \(R(\vec{S}_o)\)? Recall that we only know samples \(\{\vec{S}_o^\mu; \mu = 1, ..., N\}\) (the training data). Hence sampling from \(R(\vec{S}_o)\) reduces to selecting one of the training examples at random.

The fact that the Boltzmann Machines uses Gibbs sampling is a big limitation. If the model is complicated – i.e. there are many hidden nodes and weights \(\omega_{ij}\) – then Gibbs sampling takes a very long time to converge. This
means the calculating the learning rule, equation (7), becomes impractical. We can approximate the expectations $<S_i S_j>$ by equations (9,10), but these approximations can be extremely bad.

This means that Boltzmann Machines are of limited effectiveness. In a later section we discuss Restricted Boltzmann Machines (RBMs) for which we can perform efficient sampling and hence estimate the $<S_i S_j>$ and $<S_i S_j>_{clamped}$ effectively. RBMs are used as components to build one type of deep neural networks.

Note that in some accounts of Boltzmann Machines say that the BMs have to run to reach thermal equilibrium. This is equivalent to saying that Gibbs sampling yields samples from (S_o, S_h) (and from $P(S_h | S_o)$).

2. Derivation of the BM update rule

To justify the learning rule, equation (7), we need to take the derivative of the cost function $\partial C(\vec{\omega})/\partial\omega_{ij}$.

$$\frac{\partial C}{\partial \omega_{ij}} = -\sum_{\vec{s}_o} R(\vec{s}_o) \frac{\partial P(\vec{s}_o)}{\partial\omega_{ij}}$$

(11)

Expressing $P(\vec{s}_o) = \frac{1}{Z} \sum_{\vec{s}_h} \exp\{ -E(\vec{s}) / T \}$, we can express $\frac{\partial P(\vec{s}_o)}{\partial\omega_{ij}}$ in two terms:

$$\frac{1}{Z} \frac{\partial}{\partial\omega_{ij}} \sum_{\vec{s}_h} \exp\{ -E(\vec{s}) / T \} - \frac{1}{Z} \sum_{\vec{s}_h} \exp\{ -E(\vec{s}) / T \} \frac{\partial \log Z}{\partial\omega_{ij}}$$

(12)

which can be re-expressed as:

$$\frac{-1}{T} \sum_{\vec{s}_h} S_i S_j P(\vec{s}) + \sum_{\vec{s}_h} P(\vec{s}) \frac{1}{T} \sum_{\vec{s}} S_i S_j P(\vec{s})$$

(13)

Hence we can compute:

$$\frac{\partial P(\vec{s}_o)}{\partial\omega_{ij}} = \frac{-1}{T} \sum_{\vec{s}_h} S_i S_j P(\vec{s}) + P(\vec{s}_h) \frac{1}{T} \sum_{\vec{s}} S_i S_j P(\vec{s})$$

(14)

Substituting equation (14) into equation (11) yields

$$\frac{\partial C}{\partial\omega_{ij}} = \frac{1}{T} \sum_{\vec{s}_h, \vec{s}_o} S_i S_j P(\vec{s}) R(\vec{s}_o) - \frac{1}{T} \sum_{\vec{s}_o} R(\vec{s}_o) \sum_{\vec{s}} S_i S_j P(\vec{s})$$

(15)

Which can be simplified to give:

$$\frac{\partial C}{\partial\omega_{ij}} = \frac{1}{T} \sum_{\vec{s}} S_i S_j P(\vec{s}_h | \vec{s}_o) R(\vec{s}_o) - \frac{1}{T} \sum_{\vec{s}} S_i S_j P(\vec{s})$$

(16)

3. How does the Boltzmann Machine relate to Maximum Likelihood Learning

They are equivalent.

The Kullback-Leibler criterion, equation (4), can be expressed as

$$C(\vec{\omega}) = \sum_{\vec{s}} R(\vec{s}_o) \log R(\vec{s}_o) - \sum_{\vec{s}} R(\vec{s}_o) \log P(\vec{s}_h | \vec{s}_o)$$

(17)

Only the second term depends on $\vec{\omega}$ so we can ignore the first (since we want to minimize $E(\vec{\omega})$ with respect to $\vec{\omega}$).
Using the expression for $R(\vec{S}_o)$ in terms of the training data, equation (8), we can express the second term as:

$$-\frac{1}{N} \sum_{\vec{S}_o} \frac{1}{N} \sum_{a=1}^{N} \delta(\vec{S}_o - \vec{S}_a) \log P(\vec{S}_o)$$

(18)

$$-\frac{1}{N} \frac{1}{N} \sum_{a=1}^{N} \log P(\vec{S}_a)$$

(19)

This is precisely, the Maximum Likelihood criterion for estimating the parameters of the distribution $P(\vec{S}_o)$.

More generally, estimating the parameters of a distribution by Maximum Likelihood can always be expressed in terms of minimizing a Kullback-Leibler divergence. Why do we care? Because it gives a richer way to think of Maximum Likelihood (ML). The standard justification for ML to say that it is an asymptotically consistent estimator of the model parameters $\vec{\omega}$ provided that the data has really been generated by the probability model. This is ok, but it gives no justification for using ML if are not using the right distribution (i.e. if the data is generated by something else). But the Kullback-Leibler formulation says that you are learning the best distribution that your model allows (“best in the sense of K-L divergence). So this justifies using ML even if the distribution is only an approximation to the true model that has generated the data (which you probably never know).

4. Restricted Boltzmann Machines

RBMs are a special case of Boltmann Machines where there are no weights connecting the hidden nodes to each other. In this case the energy can be expressed as:

$$E(\vec{S}) = \sum_{i \in V_o, j \in V_h} \omega_{ij} S_i S_j.$$

(20)

This means that the conditional distributions $P(\vec{S}_h|\vec{S}_o)$ and $P(\vec{S}_o|\vec{S}_h)$ can both be factorized:

$$P(\vec{S}_o|\vec{S}_h) = \prod_{i \in V_o} \frac{1}{Z_i} P(S_i|\vec{S}_h), \quad P(\vec{S}_h|\vec{S}_o) = \prod_{j \in V_h} P(S_j|\vec{S}_o)$$

(21)

where, for $i \in V_o$, $P(S_i|\vec{S}_h) = \frac{1}{Z_i} \exp\{-(1/T)S_i(\sum_{j \in V_h} \omega_{ij} S_j)\}$ with Z_i being the normalization constant $Z_i = \sum_{S_i \in \{0,1\}} \exp\{-(1/T)S_i(\sum_{j \in V_h} \omega_{ij} S_j)\}$ – and with similar expressions for $P(S_j|\vec{S}_o)$ for $j \in V_h$.

These factorized forms means that we can sample from $P(\vec{S}_o|\vec{S}_h)$ and $P(\vec{S}_h|\vec{S}_o)$ very rapidly (e.g., by sampling from simple distributions like $P(S_i|\vec{S}_h)$). This makes learning fast and practical. To estimate the terms $<S_i S_j>$ we only need to sample from $P(\vec{S}_h|\vec{S}_o)$, which is very fast. To estimate the terms $<S_i | S_j>$, we can sample from $P(\vec{S}_o, \vec{S}_h)$ by alternatively sampling from $P(\vec{S}_o|\vec{S}_h)$ and $P(\vec{S}_h|\vec{S}_o)$. This is longer, because we have to do this multiple times until the sampling has converged (but it is much faster than doing Gibbs sampling for full Boltzmann Machines when there are weights connecting the hidden nodes).

This means that is practical to learn RBMs. But this is limited because RBMs are too simple to perform useful tasks. The solution (Hinton 2006) is to learn a hierarchy of RBMs, or a deep network. The strategy is simple. You train one RBM first using the training data. Then you train a second RBM which uses the output of the first RBM as input. Then you train a third RBM and so on. The idea is that these higher level RBMs compensate for the fact that there are no weights between output nodes of the RBMs.