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1 Lecture 4

1. Models with Spatial Context.

2. Mumford and Shah.

3. Rudin, Osher, Fatemi. TV-norm.

4. Convexity. Steepest Descent.

5. Variational Bounding and CCCP.

6. L1 norm versus L2 sparsness.

7. Appendix I: Mumford-Shah and Ambrosio-Tortorelli.

8. Appendix: Functionals and functions of many variables. Calculus of vari-
ation.

9. Appendix: Level sets — basic ideas. Split Bregman (basics).

2 Models with Spatial Context

Previous lectures assumed that we could classify, or label, pixels independently.
This simplifies the computation. But it is a bad approximation. For example, if
a pixel is grass then there is a high probability that nearby pixels are also grass.

The next few lectures will introduce methods for taking this spatial context
into account. We will also describe how we can learn spatial context from labeled
training data. These methods will require far more computation both for doing
inference (interpreting a single image) and for learning the models.

3 The Mumford and Shah model

Mumford and Shah formulated image segmentation of a domain D as the
minimization of a functional E[J, B]. The input I is an image, The output



Figure 1: Mumford-Shah tries to decompose the image into subdomains within
which the image is smooth (left panel). This assumes a piecewise smooth image
(center panel). The energy puts an edge at places where the gradient is too
large (right panel).

(j, B) = arg min E[J, B] is a smoothed image J and the position B of the bound-
aries that separates D into subdomains D = |J D;, with D; (\D; =01 # j (and
B = |J0D;) (i.e. b specifies the positions of a one-dimensional set of points).
E[J, B] is called a functional because the argument is a function J(Z). (See
appendix on functionals and calculus of variations):

ElJ,B]=C / @ - I@reaf V(&) - VJ(&)dE + B /B ds. (1)

The first term ensures that the the smoothed image J is similar to the
input 1. The second term ensures that J has small gradient |V.J| (ie. J is
smooth) except across boundaries B. The third term penalizes the length of
the boundaries ([, ds is a one-dimensional integral). Intuitively, it tries to

smooth the image I except at places where the image gradient \ﬁ] | is too high
— where it cost less energy to insert a boundary/edge.

This model exploits both edge and regional cues: (i) edge cues: it tries to
insert boundaries at places where the gradient of the image I(Z) is large, and
(ii) regional cues: it tries to group pixels which have similar intensities into
regions.

The Mumford and Shah model is closely related to the weak membrane
models by Geman+Geman and Blake+Zisserman which are formulated on the
image lattice (see later section!!).

There are several problems with the energy functional E[J, B]: (I) It is
difficult to find an algorithm which finds its minimum (j, B) = argmin E[J, B],
or even a ”good” local minimum — this is because E[J, B] is a function of a
continuous variable (function) J and a discrete function B. (II) It only uses
a very local form of smoothness based on first derivatives (first derivatives are
sufficient to model the smoothness of a soap bubble but second order derivatives
are needed to model thin plate splines — discuss why higher order smoothness is
needed — show figure). (IIT) It cannot deal with images which contain texture
regions. (But the last two are limitation of all models in this lecture). (IV) It
is not obvious that E[J, B] has a well defined minimum (an important issue for
mathematicians).



We did not discuss this model any more in the course lectures. It was
very influential but is now studied mainly for its mathematical interest (weak
smoothness is too simple a model to capture the complexity of real images). We
proceeded to the Rudin-Osher-Fatemi model is simpler but which has efficient
inference algorithms and was, until recently, at the state of the art for image
de-noising).

4 Rudin, Osher, Fatemi: the TV norm model

We introduce another energy functional E[J; I] which is simpler than Mumford-
Shah but shares many of its intuitions — its output J is a smoothed version of
the input I except at boundaries/edges where the image gradient is large. This
model has many practical advantages — there are algorithms that can find its
global minimum very rapidly (real time) and it used to be state of the art for
image denoising.

E[J;I] = /D |6J|d:z+% /D (J(Z) — I(Z))%dz (2)

This has an L1 norm on the gradient and no explicit edge variable (but see
below). Because it is the sum of two convex terms — quadratic and linear — it is
oonvex (see next section). Since it is also bounded below (clearly E[J; I] > 0) it
has only a global minimum and hence steepest descent methods are guaranteed
to perform inference and get to the global minimum.
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The first term tries to make J have small gradients and the second term
tries to keep J close to the input I. Here g—? is the functional derivative (see
appendix on calculus of variations!!).

The Rudin-Osher-Fatemi model has no explicit edge variable (unlike Mumford-
Shah). But it can be reformulated be introducing a new variable z and an energy

function:

ElJ,2] = 1/ (VT2 + 2 Yd + 3/ (J - I)2d7. ()
2Jp 2Jp
We can solve for z = 1/|VJ| (differentiate E[J,z] with respect to z) and
substitute back to obtain the Rudin-Osher-Fatemi model. We can interpret z
as a measure of edgeness — z = 0 indicates an edge.
Alternative minimization can be used to minimize E[J, z]. Minimizing E[J, z]
with respect to z yields 21 = 1/|V.J?|. Minimizing E[J, z] with respect to z
requires solving:
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Figure 2: Convex functions (far left panels). Concave function (center panel).
Non-convex function (right panel). Unique minimum for non-convex function
(far right panel).

V{2 VI 4+ A(JH - 1) =0, (5)

which has a unique solution (since E[J, z] is a convex function of J if z is fixed).
This alternative minimization reduces to the well-known lagged-diffusion
model:

—V AV IV A =) = 0. (6)

NOTE: should mention level sets. State other nice properties of the TV
norm.

5 Convexity and Steepest Descent

An energy functional (or function) E[J;I] is convex if for all 0 < o < 1 and
any Jp,Jo we have aFE[J;,I] 4+ (1 — «)E[J3,I] > Ela1J; + (1 — a1)J2]. This
is equivalent to the condition that the Hessian of E[J;I] — the second order
derivatives ‘?T}f — is positive semi-definite.

Steepest descent updates J in the direction of the gradient —g—? (i.e. down-
hill in E[J; I]. This is guaranteed to reduce the energy:
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If E[J] is convex and bounded below (e.g., E[J] > 0) then E[J] has a
unique minimum (which is global) and steepest descent is guaranteed to find
it. There are non-convex functions which only have a singe (global) minimum.
But convexity is the only criterion that can be easily checked to guarantee that
an energy function has a unique minimum.

Concave functions are the opposite of convex functions. Hence —E[J] is
concave if E[J] is convex and vice versa.

Surprisingly a very large number of functions can be decomposed into the
sum of a convex and a concave part. This seems counter-intuitive. But it can
be shown fairly easily (e.g., see Yuille and Rangarajan).



6 Variational Bounding and CCCP

Note: some repetition at the start of this section.

Steepest descent methods need to be discretized in time to be implemented
by computers. We must convert the update equation ‘fi—f = —% =-V (&) into
a discrete update rule:

Ty =Ty — AVf(f(t)), (8)

There is a trade-off in the choice of the parameter A. To approximate the
continuous time update equation requires A to be infinitesimally small. But if A
is too small then the algorithm converges slowly. But, conversely, if A is too big
then the discrete update is a bad approximation to the continuous time update
and may not converge (decrease in energy is not guaranteed — the solution can
oscillate or even go chaotic). There are standard methods for dealing with this —
see also Newton-Raphson (Refs) — it is usually good to determine A adaptively
so that it is small when the gradient [V f(Z(t))| is large and big when the gradient
is small.

Discrete iterative algorithms are an alternative. They are guaranteed to
converge (at least to local minima) and do not require choosing a step size.
They are less well-known in general, but occur frequently in vision and machine
learning, so we describe them in more detail here. Fortunately, and surprisingly,
there are some general principles that underlies almost all discrete iterative
methods (despite many of them being developed independently). (Refer to
methods — majorization, EM, Legendre transform, etc.).

Consider minimizing F(Z). Variational bounding proceeds by obtaining a
sequence of bounding functions Ep(Z,#,) where &, is the current state, see
figure (3). The bounding functions must obey:

Ep(,2,) > E(T),VZ, Zn
Ep(Tn, @) = E(Z,). 9)

Then the algorithm &,,41 = arg ming Eg(&,,) is guaranteed to converge to a
minimum of E(Z). The algorithm can make large moves from Z,, to &, 1.

A special case of this approach is called CCCP (it can be shown that many
discrete iterative algorithms — including many instances of variational bounding
— can be derived from CCCP — Yuille and Rangarajan). Decompose the function
E(Z) into a concave E.(Z) and a convex part E,(Z) so that: E(Z) = E.(Z) +
E,(%). Then define the update rule:

VE,(Zpi1) = —VEd(Z,). (10)

By properties of convex and concave functions, this CCCP update rule is
guaranteed to decrease the energy at each time-step.

It is easy to check (FIGURE) that the CCCP is a special case of majoriza-
tion/variational bounding. Because it corresponds to the bound Egp(Z, Z,) =

Ey(Z) + Eo(Zn) + (T — &) - VE.(T).
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Figure 3: Put a variational bound on the function you want to minimize. Then
minimize this bound. Then replace with a new bound and repeat.

It can be shown that several well-known algorithms used in this course —
EM, GIS, Sinkhorn — can be obtained as special cases of CCCP and hence of
majorization/variational bounding (Yuille and Rangarajan — though the proofs
may require changes of variables).

Here is a simple example E(x) = wlogz + (1 — x)log(l — z) — (1/2)z?
for 0 < 2 < 1. We can decompose E(z) into a convex function E,(x) =
rlogz + (1 — x)log(l — z) and a concave function E.(x) = —(1/2)z%. This
decomposition gives a discrete update rule:

1

1+exp{—z,} (11)

Tn4+1 =

6.1 Relations of Discrete Iterative to Steepest Descent

Note: this is optional.

Why should you care? It shows that methods for discretezing steepest de-
scent can be derived directly from discrete iterative algorithms.

First we show how to derive the discretizing parameter A for steepest descent
from the perspective of discrete iterative algorithms (in particular CCCP). The
goal is to minimize f(x). Re-express this as f(z) = (1/2)K2?+{f(z)—1/2Kx?}
where K is chosen so f(z)—1/2Kz? is concave (use Hessian argument — choose
K so that the Hessian is negative semi-definite). Then CCCP gives the update
equation z't! = 2t — (1/K)g—£. Hence the step A = 1/K can be derived from
requiring that f(z) — 1/2Kz? is concave.

Some popular methods for stabilizing gradient/steepest descent can be ex-
plained as an example of this discrete iterative framework. For example, Eyre
studies gradient flow dZ/dt = —VE(Z) and proposes to decompose E(Z) =
Eq(Z) — E5(Z) where Eq(.) and Es(.) are convex functions (i.e., —E»(Z) is a
concave function — so this is like a CCCP decomposition). His update rule is:



Frp1 — ¥ = M{VEsy (&) — VEI (T111)}- (12)

This is just CCCP with the decomposition E,(Z) = F1(Z) + (1/2A)Z - & and

E.(¥) = —E2(Z) — (1/2A)Z - . Observe that Eyre’s method looks like a small
modification of the basic gradient/steepest descent ¥p11 — & = —A{VE(Z,).

7 L1 norm versus L2 — sparsity and robustness

The Rudin-Osher-Fatemi model uses an L1 penalty for the gradient |f\ One
advantage of this penalty is that it encourages sparsity — it will bias the solution
to precisely 0. This relates to sparsity (which will re-occur throughout the
course) and is illustrated by the following example (here we replace \J_] by J to
simplify the argument).

flwil) = (w—1)* + Awl (13)
What is &(I) = argmin,, f(w; I)?
few ) =(w-1I)?+Xw. Forw>0 (14)
fo(w;I)=(w—1)* =X w. Forw<0 (15)
21 —
%:2@-1)%:0:@(1): A Vo> 0 (16)
df - 21+ A
0 (w=I)—A=0= () 5 ,Vw <0 (17)
Hence, we have
21 — )\
W) ===, I>3 (18)
w(I) =0, [I|<3% (19)
21
an =22 1< (20)

As we show in Figure 7, the use of the L1 norm |w| biases the solution to
@(I) =0 for small I.
By contrast, fa(w;I) = (w — I)? + Aw? has minimum at w — I + A\w = 0.

Therefore,
I
() = 1
o) =155

which always smooths I, but doesn’t force it to 0.

Note: L1 norm corresponds to an exponential distribution and L2 norm to
a Gaussian distribution. This will be described in the next lecture. Gaussian
distribution are non-robust and very sensitive to outliers.

(21)
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Figure 4: L1 norm is better

7.1 Appendix I: Mumford and Shah — Ambrosio-Tortorelli

Advanced topic: not required for the course.

Why should you care? It gives examples of optimization methods which
can be applied to a range of vision problems (and other problems). (I) Tt
illustrates a continuation method — want to minimize a function E[f], define
a parameterized family of functions E[f, €] so that lim. ¢ F[f, €] = E[f] and
where E[f, €] becomes smoother (has less minima) as € increases (like annealing),
minimize E|[f, €] for large €, use this as initial conditions to minimize E[f, €] for
smaller e (continuation methods are a heuristic — usually impossible to prove
convergence to global minimum — but often work well). (II) It is an example
of a method for converting a discrete valued variable (e.g., B) to a continuous-
valued one, which enables the use of gradient descent techniques (because we can
compute gradients of continuous variables). (III) It is an example of alternative
minimization where we minimize a function E(f,z) by fixing z, minimizing
E(f,z) with respect to f, the fixing f and minimizing with respect to z, and
repeating.

Ambrosio-Tortorelli showed that Mumford-Shah functional E[J, B] can be
obtained as the limit of a family of energy functionals E[J,z : €] where the
boundary B is replaced by continuous function z whose magnitude indicates
the presence of a boundary. Their result (see also Shen) applies to functionals:

B,z = C / dF(1(F)—J (7))2+A / d32(7)|9.(F) P+B / dE e[ 9.(F) P4e 62 (=(

(22)
where € > 0 is a (small) parameter and ¢(z) is a potential function. Two forms
of ¢(z) are ¢1(2z) = (1 —2)/2 and ¢2(z) = 32(1 — z) (where z € [0, 1]). For ¢1(.)

Z

N}



the edge set B is associated with the set of points such that ¢;(z) & 0, for ¢s(.)
the edge set is associated with points such that ¢o(z) ~ 1/2. As e — 0, the last
two terms of the energy function converge to the edge set integral | g ds (this is
not-trivial).

This energy E[J, z; €] can be minimized (local minima) by gradient descent
methods — calculate the gradient E with respect to J and z and set J!*! =

— 628 and 211 = 2t — §2E (sce gradient descent section). Alternatively,
we can minimize E[J, z; €] with respect to J and z in alteration — alternative
minimization. (Note: this is particularly easy since E[J, z; €] is a convex function
of J (for fixed z) and a convex function of z (for each .J).

8 Appendix II: Functional Analysis and Calcu-
lus of Variations

Background material: optional.

Why should you care? This lets you differential functionals (where the argu-
ments are functions). It is analogous to functions of multiple variables — where
the number of variables becomes infinite. Full understanding of calculus of
variations requires a textbook (e.g., Google Peter Olver calculus of variations).

E[J] is a functional if its argument {J(z) : z € D} is a function (by contrast,
the the argument of a function is a scalar or a vector). The calculus of variations
describes how to take functional derivatives of functionals. Here we introduce
the basic concepts and discuss the relations to function of multiple variables.

We start by defining a product < J, W >= [ J(z)W(z)dz between two
functions. This is analogous to the dot product between two vectors — e.g.
J-W = >, JiW;. The product gives an L? norm for the space |J|? =< J,J >.
The integrals are defined over the domain D.

The functional derivative £ of E[J] with respect to J is defined by the

57
relation:
OFE d .
<57 W >= %E[J + tW], for any function W. (23)

Here the right hand side is the derivative of a scalar ¢t. It is the derivative of
E in the direction W (e.g., like taking the derivative of a multivariate function
f(Z) in direction 7 — 7i - Vf = 4 f(Z + tit)).

Now suppose that E[J] = [ L(J, J'Jdz where J'(z) = <L J(z) (e.g., L(J, J') =
J(x)? + %2)). Then it follows that

oL
aJ”

W >= /{W— +w’ (24)

oL oL
(e.g., 57 = 2L(x) and 5% = 2J'(x)).
Next we use integration by parts to convert the term:

, iy 0
/W o /Wd o™ /7{W6J’}d (25)




We require that W(z) = 0 for € D — the boundary of D. Then it follows

that:
oF oL d OL

This condition must hold for all functions W () (which vanish on dD). Hence

we have:
0E 0L d OL

5J 9J dxdJ
These are the Euler-Lagrange equations. (E.g., 2J(z) — 2J"(x)).
This can be extended to other functionals — e.g., L(W, W', W") — by repeat-
ing this procedure performing integration by parts as often as needed.
So there are only two things to know — the definition in equation (!!) and
the use of integration by parts.
It is interesting to compare this to differentiation of functions of multiple

(27)

variables. Suppose we discrete the functional E[J] = [ J(z)? + %2 to obtain:
EplJ] = ZJZQ + Z(Ji—H — )% (28)

We compute:
OFEp
0J;

which is the same as the discretized version of 2J(z) — 2J"(x).

=2J; + 2(2J; — Jiy1 — Ji1). (29)

Appendix III: Legendre Transforms

Note: another optional section.

The Legendre transform can be used to reformulate optimization problems in
terms by introducing auxiliary variables. Let F(Z) be a convex function, define
its Legendre transform to be E*(§) = ming{F (%) + £ - ¢}. It can be verified
that E*(7) is concave. We recover E(Z) by the inverse transform: E(Z) =
maxg{E*(§) — - Z}.

Now suppose an energy function is expressed in CCCP form as E(Z) =
E,(Z) + E.(¥) where E,(.) is convex and E.(.) concave. Minimizing F(Z) wrt
T is equivalent to minimizing the function E(Z,%) = E,(Z) + 7 - § + E.- (%)
wrt 7,7, where E;'* is the inverse Legendre transform of E.(.). Minimizing
E(#,¥) by coordinate descent (i.e. wrt & and § alternatively) is equivalent to
performing CCCP on E(.).

10



