Spectral Methods for Dimensionality Reduction

Prof. Lawrence Saul

Dept of Computer \& Information Science University of Pennsylvania

UCLA IPAM Tutorial, July 11-14, 2005

Dimensionality reduction

- Question

How can we detect low dimensional structure in high dimensional data?

- Applications
- Digital image and speech libraries
- Neuronal population activities
- Gene expression microarrays
- Financial time series

Framework

- Data representation Inputs are real-valued vectors in a high dimensional space.
- Linear structure

Does the data live in a low dimensional subspace?

- Nonlinear structure Does the data live on a low dimensional submanifold?

Linear vs nonlinear

What computational price must we pay for nonlinear dimensionality reduction?

Spectral methods

- Matrix analysis

Low dimensional structure is revealed by eigenvalues and eigenvectors.

- Links to spectral graph theory

Matrices are derived from sparse weighted graphs.

- Usefulness

Tractable methods can reveal nonlinear structure.

Notation

- Inputs (high dimensional)

$$
\vec{x}_{i} \in \mathfrak{R}^{D} \text { with } i=1,2, \ldots, n
$$

- Outputs (low dimensional)
$\vec{y}_{i} \in \mathfrak{R}^{d}$ where $d \ll D$
- Goals

Nearby points remain nearby. Distant points remain distant. (Estimate d.)

Manifold learning

Given high dimensional data sampled from a low dimensional submanifold, how to compute a faithful embedding?

Image Manifolds

日

c
 (Tenenbaum et al, 2000)

Outline

- Day 1 - linear, nonlinear, and graph-based methods
- Day 2 - sparse matrix methods
- Day 3-semidefinite programming
- Day 4 - kernel methods

Questions for today

- How to detect linear structure?
- principal components analysis
- metric multidimensional scaling
- How (not) to generalize these methods?
- neural network autoencoders
- nonmetric multidimensional scaling
- How to detect nonlinear structure?
- graphs as discretized manifolds
- Isomap algorithm

Linear method \#1

Principal Components Analysis (PCA)

Principal components analysis

Does the data mostly lie in a subspace? If so, what is its dimensionality?

Maximum variance subspace

- Assume inputs are centered:

$$
\sum_{i} \vec{x}_{i}=\overrightarrow{0}
$$

- Project into subspace:

$$
\vec{y}_{i}=P \vec{x}_{i} \text { with } P^{2}=P
$$

- Maximize projected variance:

$$
\operatorname{var}(\vec{y})=\frac{1}{n} \sum_{i}\left\|P \vec{x}_{i}\right\|^{2}
$$

Matrix diagonalization

- Covariance matrix

$$
\operatorname{var}(\vec{y})=\operatorname{Tr}\left(P C P^{\mathrm{T}}\right) \text { with } C=n^{-1} \sum_{i} \vec{x}_{i} \vec{x}_{i}^{T}
$$

- Spectral decomposition

$$
C=\sum_{\alpha=1}^{D} \lambda_{\alpha} \vec{e}_{\alpha} \vec{e}_{\alpha}^{\mathrm{T}} \text { with } \lambda_{1} \geq \cdots \geq \lambda_{D} \geq 0
$$

- Maximum variance projection

$$
P=\sum_{\alpha=1}^{d} \vec{e}_{\alpha} \vec{e}_{\alpha}^{\mathrm{T}}
$$

Projects into subspace spanned by top d eigenvectors.

Interpreting PCA

- Eigenvectors:
principal axes of maximum variance subspace.
- Eigenvalues: projected variance of inputs along principle axes.
- Estimated dimensionality: number of significant (nonnegative) eigenvalues.

Example of PCA

Eigenvectors and eigenvalues of covariance matrix for $n=1600$ inputs in $d=\mathbf{3}$ dimensions.

Example: faces

Eigenfaces from 7562 images:

top left image
is linear combination of rest.

Sirovich \& Kirby (1987) Turk \& Pentland (1991)

Another interpretation of PCA:

- Assume inputs are centered:

$$
\sum_{i} \vec{x}_{i}=\overrightarrow{0}
$$

- Project into subspace:

$$
\vec{y}_{i}=P \vec{x}_{i} \text { with } P^{2}=P
$$

- Minimize reconstruction error:

$$
\operatorname{err}(\vec{y})=n^{-1} \sum_{i}\left\|\vec{x}_{i}-P \vec{x}_{i}\right\|^{2}
$$

Equivalence

- Minimum reconstruction error:

$$
\operatorname{err}(\vec{y})=n^{-1} \sum_{i}\left\|\vec{x}_{i}-P \vec{x}_{i}\right\|^{2}
$$

- Maximum variance subspace

$$
\operatorname{var}(\vec{y})=n^{-1} \sum_{i}\left\|P \vec{x}_{i}\right\|^{2}
$$

Both models for linear dimensionality reduction yield the same solution.

PCA as linear autoencoder

- Network

Each layer implements a linear transformation.

- Cost function

Minimize

reconstruction error through bottleneck:

$$
\operatorname{err}(P)=n^{-1} \sum_{i}\left\|\vec{x}_{i}-P^{\mathrm{T}} P \vec{x}_{i}\right\|^{2}
$$

Summary of PCA

1) Center inputs on origin.
2) Compute covariance matrix.
3) Diagonalize.
4) Project.

5) $\overrightarrow{0}=\sum_{i} \vec{x}_{i}$
6) $C=n^{-1} \sum_{i} \vec{x}_{i} \vec{x}_{i}^{\text {T }}$
7) $C=\sum_{\alpha} \lambda_{\alpha} \vec{e}_{\alpha} \vec{e}_{\alpha}^{\mathrm{T}}$
8) $\vec{y}_{i}=P \vec{x}_{i}$ with $P=\sum_{\alpha \leq d} \vec{e}_{\alpha} \vec{e}_{\alpha}^{\mathrm{T}}$

$$
\begin{aligned}
& D=3 \\
& d=2
\end{aligned}
$$

Properties of PCA

- Strengths
-Eigenvector method
- No tuning parameters
-Non-iterative
-No local optima
- Weaknesses
-Limited to second order statistics
-Limited to linear projections

So far..

- Q: How to detect linear structure? A: Principal components analysis - Maximum variance subspace
- Minimum reconstruction error
-Linear network autoencoders
- Q: How (not) to generalize for manifolds?

Nonlinear autoencoder

- Neural network Each layer parameterizes a nonlinear transformation.
- Cost function Minimize reconstruction error:

$$
\operatorname{err}(W)=n^{-1} \sum_{i} \| \vec{x}_{i}-l_{W}\left(h _ { W } \left(g _ { W } \left(f_{W}\left(\vec{x}_{i}\right) \|^{2}\right.\right.\right.
$$

Properties of neural network

- Strengths
- Parameterizes nonlinear mapping (in both directions).
-Generalizes to new inputs.
- Weaknesses
-Many unspecified choices: network size, parameterization, learning rates.
-Highly nonlinear, iterative optimization with local minima.

Linear vs nonlinear

What computational price must we pay for nonlinear dimensionality reduction?

Linear method \#2

Metric Multidimensional Scaling (MDS)

Multidimensional scaling

Given $n(n-1) / 2$ pairwise distances $\Delta_{i j}$, find vectors \vec{y}_{i} such that $\left\|\vec{y}_{i}-\vec{y}_{j}\right\| \approx \Delta_{i j}$.

Metric Multidimensional Scaling

- Lemma

If $\Delta_{i j}$ denote the Euclidean distances of zero mean vectors, then the inner products are:

$$
G_{i j}=\frac{1}{2}\left[\sum_{k}\left(\square_{i k}^{2}+\square_{k j}^{2}\right)-\square_{i j}^{2}-\sum_{k l} \square_{k l}^{2}\right]
$$

- Optimization

Preserve dot products (proxy for distances). Choose vectors $\overrightarrow{\boldsymbol{y}}_{\boldsymbol{i}}$ to minimize:

$$
\operatorname{err}(\vec{y})=\sum_{i j}\left(G_{i j}-\vec{y}_{i} \cdot \vec{y}_{j}\right)^{2}
$$

Matrix diagonalization

- Gram matrix "matching"

$$
\operatorname{err}(\vec{y})=\sum_{i j}\left(G_{i j}-\vec{y}_{i} \cdot \vec{y}_{j}\right)^{2}
$$

- Spectral decomposition

$$
G=\sum_{\alpha=1}^{n} \lambda_{\alpha} \vec{v}_{\alpha} \vec{v}_{\alpha}^{\mathrm{T}} \text { with } \lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0
$$

- Optimal approximation

$$
y_{i \alpha}=\sqrt{\lambda_{\alpha}} v_{\alpha i} \text { for } \alpha=1,2, \ldots, d \text { with } d \leq n
$$

(scaled truncated eigenvectors)

Interpreting MDS

$y_{i \alpha}=\sqrt{\lambda_{\alpha}} v_{\alpha i}$ for $\alpha=1,2, \ldots, d$ with $d \ll n$

- Eigenvectors

Ordered, scaled, and truncated to yield low dimensional embedding.

- Eigenvalues

Measure how each dimension contributes to dot products.

- Estimated dimensionality

Number of significant (nonnegative) eigenvalues.

Relation to PCA

- Dual matrices

$$
\begin{array}{|llr|}
\hline C_{\alpha \beta} & =n^{-1} \sum_{i} x_{i \alpha} x_{i \beta} & \text { covariance matrix }(D \times D) \\
G_{i j} & =\vec{x}_{i} \bullet \vec{x}_{j} & \text { Gram matrix } \quad(n \times n) \\
\hline
\end{array}
$$

- Same eigenvalues

Matrices share nonzero eigenvalues up to constant factor.

- Same results, different computation PCA scales as $O\left((n+d) D^{2}\right)$. MDS scales as $O\left((D+d) n^{2}\right)$.

So far..

- Q: How to detect linear structure? A1: Principal components analysis A2: Metric multidimensional scaling
- Q: How (not) to generalize for manifolds?

Nonmetric MDS

Transform pairwise distances: $\Delta_{i j} \longrightarrow g\left(\Delta_{i j}\right)$. Find vectors \vec{y}_{i} such that $\left\|\vec{y}_{i} \vec{y}_{j}\right\| \approx g\left(\Delta_{i j}\right)$.

Non-Metric MDS

- Distance transformation

Nonlinear, but monotonic. Preserves rank order of distances.

- Optimization

Preserve transformed distances. Choose vectors $\overrightarrow{\boldsymbol{y}}_{i}$ to minimize:

$$
\operatorname{err}(\vec{y})=\sum_{i j}\left(g\left(\square_{i j}\right)-\left\|\vec{y}_{i}-\vec{y}_{j}\right\|\right)^{2}
$$

Properties of non-metric MDS

- Strengths
- Relaxes distance constraints.
- Yields nonlinear embeddings.
- Weaknesses
-Highly nonlinear, iterative optimization with local minima.
-Unclear how to choose distance transformation.

Non-metric MDS for manifolds?

Rank ordering of Euclidean distances is NOT preserved in "manifold learning".

$d(A, C)<d(A, B)$
$d(A, C)>d(A, B)$

Linear vs nonlinear

What computational price must we pay for nonlinear dimensionality reduction?

Graph-based method \#1

Isometric mapping of data manifolds (ISOMAP)

(Tenenbaum, de Silva, \& Langford, 2000)

Dimensionality reduction

- Inputs

$$
\vec{x}_{i} \in \Re^{D} \text { with } i=1,2, \ldots, n
$$

- Outputs
$\vec{y}_{i} \in \mathfrak{R}^{d}$ where $d \ll D$
- Goals

Nearby points remain nearby. Distant points remain distant. (Estimate d.)

Isomap

- Key idea:

Preserve geodesic distances as measured along submanifold.

- Algorithm in a nutshell:

Use geodesic instead of (transformed) Euclidean distances in MDS.

Step 1. Build adjacency graph.

- Adjacency graph Vertices represent inputs. Undirected edges connect neighbors.
- Neighborhood selection Many options: \boldsymbol{k}-nearest neighbors, inputs within radius r, prior knowledge.

Graph is discretized approximation of submanifold.

Building the graph

- Computation
kNN scales naively as $O\left(n^{2} D\right)$.
Faster methods exploit data structures.
- Assumptions

1) Graph is connected.
2) Neighborhoods on graph reflect neighborhoods on manifold.

No "shortcuts" connect different arms of swiss roll.

Step 2. Estimate geodesics.

- Dynamic programming

Weight edges by local distances. Compute shortest paths through graph.

- Geodesic distances

Estimate by lengths $\Delta_{i j}$ of shortest paths: denser sampling = better estimates.

- Computation

Djikstra's algorithm for shortest paths scales as $O\left(n^{2} \log n+n^{2} k\right)$.

Step 3. Metric MDS

- Embedding

Top d eigenvectors of Gram matrix yield embedding.

- Dimensionality

Number of significant eigenvalues yield estimate of dimensionality.

- Computation

Top d eigenvectors can be computed in $O\left(n^{2} d\right)$.

Summary

- Algorithm

1) k nearest neighbors
2) shortest paths through graph
3) MDS on geodesic distances

- Impact

Much simpler than earlier algorithms for manifold learning. Does it work?

Examples

- Swiss roll

$$
\begin{aligned}
& n=1024 \\
& k=12 \\
& \hline
\end{aligned}
$$

- Wrist images

$$
\begin{aligned}
& n=2000 \\
& k=6 \\
& D=64^{2} \\
& \hline
\end{aligned}
$$

Examples

- Face images

$$
\begin{aligned}
& n=698 \\
& k=6
\end{aligned}
$$

- Digit images

$$
\begin{aligned}
n & =1000 \\
r & =4.2 \\
D & =20^{2}
\end{aligned}
$$

Interpolations
 A. Faces
 B. Wrists
 C. Digits

日

Linear in Isomap feature space. Nonlinear in
pixel space.

Properties of Isomap

- Strengths
-Polynomial-time optimizations
-No local minima
-Non-iterative (one pass thru data)
-Non-parametric
-Only heuristic is neighborhood size.
- Weaknesses
-Sensitive to "shortcuts"
-No out-of-sample extension

Large-scale applications

Problem:

Too expensive to compute all shortest paths and diagonalize full Gram matrix.
Solution:
Only compute shortest paths in green and diagonalize submatrix in red.

Landmark Isomap

- Approximation
- Identify subset of inputs as landmarks.
- Estimate geodesics to/from landmarks.
- Apply MDS to landmark distances.
- Embed non-landmarks by triangulation.
-Related to Nystrom approximation.
- Computation
-Reduced by l / n for $l<n$ landmarks.
-Reconstructs large Gram matrix from thin rectangular sub-matrix.

Example

Embedding of sparse music similarity graph

$$
\begin{aligned}
& n=267 \mathrm{~K} \\
& e=3.22 \mathrm{M} \\
& \ell=400 \\
& \tau=6 \text { minutes }
\end{aligned}
$$

(Platt, 2004)

Theoretical guarantees

- Asymptotic convergence

For data sampled from a submanifold that is isometric to a convex subset of Euclidean space, Isomap will recover the subset up to rotation \& translation. (Tenenbaum et al; Donoho \& Grimes)

- Convexity assumption

Geodesic distances are not estimated correctly for manifolds with holes...

Connected but not convex

- 2d region with hole
input

Isomap

- Images of 360° rotated teapot

eigenvalues of Isomap

Connected but not convex

- Occlusion Images of two disks, one occluding the other.

- Locomotion

Images of periodic gait.

Linear vs nonlinear

What computational price must we pay for nonlinear dimensionality reduction?

Nonlinear dimensionality reduction since 2000...

These

 strengths and weaknesses are typical of graph-based spectral methods for dimensionality reduction.
Properties of Isomap

- Strengths
- Polynomial-time optimizations
- No local minima
- Non-iterative (one pass thru data)
- Non-parametric
- Only heuristic is neighborhood size.
- Weaknesses
- Sensitive to "shortcuts"
- No out-of-sample extension

Spectral Methods

- Common framework

1) Derive sparse graph from $k N N$.
2) Derive matrix from graph weights.
3) Derive embedding from eigenvectors.

- Varied solutions

Algorithms differ in step 2.
Types of optimization: shortest paths, least squares fits, semidefinite programming.

Algorithms

(Roweis \& Saul)

Looking ahead

- Trade-offs

Sparse vs dense eigensystems? Preserving distances vs angles? Connected vs convex sets?

- Connections

Spectral graph theory
Convex optimization Differential geometry

Tuesday

Sparse Matrix Methods

Wednesday

(Roweis \& Saul)

Semidefinite Programming

To be continued....

See you tomorrow.

