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0.1 Section Draft

This chapter describes methods for estimating the marginals and max-
imum a posteriori (MAP) estimates of probability distributions defined
over graphs by approximate methods including Mean Field Theory
(MFT), variational methods, and belief propagation. These methods
typically formulate this problem in terms of minimizing a free energy
function of pseudomarginals. They differ by the design of the free energy
and the choice of algorithm to minimize it. These algorithms can often
be interpreted in terms of message passing. In many cases, the free
energy has a dual formulation and the algorithms are defined over the
dual variables (e.g., the messages in belief propagation). The quality
of performance depends on the types of free energies used – specifically
how well they approximate the log partition function of the probabil-
ity distribution – and whether there are suitable algorithms for finding
their minima. We start in section (II) by introducing two types of
Markov Field models that are often used in computer vision. We pro-
ceed to define MFT/variational methods in section (III), whose free
energies are lower bounds of the log partition function, and describe
how inference can be done by expectation-maximization, steepest
descent, or discrete iterative algorithms. The following section (IV)
describes message passing algorithms, such as belief propagation and
its generalizations, which can be related to free energy functions (and
dual variables). Finally in section (V) we describe how these methods
relate to Markov Chain Monte Carlo (MCMC) approaches, which gives
a different way to think of these methods and which can lead to novel
algorithms.

0.2 Two Models

We start by presenting two important probabilistic vision models which
will be used to motivate the algorithms described in the rest of the
section.

The first type of model is formulated as a standard Markov Ran-
dom Field (MRF) with input z and output x. We will describe two
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vision applications for this model. The first application is image label-
ing where z = {zi : i ∈ D} specifies the intensity values zi ∈ {0, 255} on
the image lattice D and x = {xi : i ∈ D} is a set of image labels xi ∈ L,
see figure (1). The nature of the labels will depend on the problem. For
edge detection, |L| = 2 and the labels l1, l2 will correspond to ’edge’
and ’non-edge’. For labeling the MSRC dataset [36] |L| = 23 and the
labels l1, ..., l23 include ’sky’, ’grass’, and so on. A second application
is binocular stereo, see figure (2), where the input is the input images
to the left and right cameras, z = (zL, zR), and the output is a set of
disparities x which specify the relative displacements between corre-
sponding pixels in the two images and hence determine the depth, see
figure (2) (!!cite: stereo chapter).

Figure 0.1 GRAPHS for different MRF’s. Conventions (far left), basic MRF
graph (middle left), MRF graph with inputs zi (middle right), and graph with lines
processors yij (far right).

We can model these two applications by a posterior probability dis-
tribution P (x|z) and hence is a conditional random field [24]. This
distribution is defined on a graph G = (V, E) where the set of
nodes V is the set of image pixels D and the edges E are between
neighbouring pixels – see figure (1). The x = {xi : i ∈ V} are
random variables specified at each node of the graph. P (x|z) is a
Gibbs distribution specified by an energy function E(x, z) which con-
tains unary potentials U(x, z) =

∑
i∈V φ(xi, z) and pairwise potentials

V (x,x) =
∑

ij∈E ψij(xi, xj). The unary potentials φ(xi, z) depend only
on the label/disparity at node/pixel i and the dependence on the
input z will depend on the application: (I) For the labeling applica-
tion φ(xi, z) = g(z)i, where g(.) is a non-linear filter, which can be
obtained by an algorithm like AdaBoost [41], and evaluated in a local
image window surrounding pixel i. (II) For binocular stereo, we can set
φ(xi, zL, zR) = |f(zL)i − f(zR)i+xi

|, where f(.) is a vector-value filter
and |.| is the L1-norm, so that φ(.) takes small values at the dispar-
ities xi for which the filter responses are similar on the two images.
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The pairwise potentials impose prior assumptions about the local ’con-
text’ of the labels and disparities. These models typically assume that
neighboring pixels will tend to have similar labels/disparities – see
figure (2).

Figure 0.2 Stereo. The geometry of stereo (left). A point P in 3-D space is
projected onto points PL, PR in the left and right images. The projection is spec-
ified by the focal points OL, OR and the directions of gaze of the cameras (the
camera geometry). The geometry of stereo enforces that points in the plane spec-
ified by P, OL, OR must be projected onto corresponding lines EL, ER in the two
images (the epipolar line constraint). If we can find the correspondence between
the points on epipolar lines then we can use trigonometry to estimate their depth,
which is (roughly) inversely proportional to the disparity, which is the relative dis-
placement of the two images. Finding the correspondence is usually ill-posed unless
and requires making assumptions about the spatial smoothness of the disparity (and
hence of the depth). Current models impose weak smoothness priors on the disparity
(center). Earlier models assumed that the disparity was independent across epipolar
lines which lead to similar graphic models (right) where inference could be done by
dynamic programming.

In summary, the first type of model is specified by a distribution
P (x|z) defined over discrete-valued random variables x = {xi : i ∈ V}
defined on a graph G = (V, E):

P (x|z) =
1

Z(z)
exp{−

∑
i∈V

φi(xi, z)−
∑
ij∈E

ψij(xi, xj)}. (0.1)

The goal will be to estimate properties of the distribution such as
the MAP estimator and the marginals (which relate to each other,
as discussed in subsection (III-E):

x∗ = arg max
x

P (x|z), the MAP estimate,

pi(xi) =
∑

x/i

P (x|z), ∀i ∈ V the marginals. (0.2)
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The second type of model has applications to image segmentation,
image denoising, and depth smoothing. It is called the weak membrane
model and it was proposed independently by Geman and Geman [16]
and Blake and Zisserman [5]). This model has additional ’hidden vari-
ables’ y, which are used to explicitly label discontinuities. It is also
a generative model which specifies a likelihood function and a prior
probability (by contrast to conditional random fields which specify the
posterior distribution only). This type of model can be extended by
using more sophisticated hidden variables to perform tasks such as
long range motion correspondence [46], object alignment [7], and the
detection of particle tracks in high energy physics experiments [28].

The input to the weak membrane model is the set of intensity (or
depth) values z = {zi : i ∈ D} and the output is x = {xi : i ∈ D}
defined on a corresponding output lattice (formally we should specify
two different lattices, say D1 and D2, but this makes the notation too
cumbersome). We define a set of edges E which connect neighbouring
pixels on the output lattice and define the set of line processes y = {yj :
j ∈ De} with yij ∈ {0, 1} over these edges, see figure (1). The weak
membrane is a generative model so it is specified by two probability
distributions: (i) the likelihood function P (z|x), which specifies how
the observed image z is a corrupted version of the image x, and (ii) the
prior distribution P (x,y) which imposes a weak membrane by requiring
that neighbouring pixels take similar values except at places where the
line process is activated.

The simplest version of the weak membrane model is specified by the
distributions:

P (z|x) =
∏
i∈D

√
τ

π
exp{−τ(zi − xi)2}, P (x,y) ∝ exp{−E(x,y)},

with E(x,y) = A
∑

(i,j)∈E
(xi − xj)2(1− yij) + B

∑

(i,j)∈E
yij.(0.3)

In this model the intensity variables xi, zi are continuous-valued while
the line processor variables yij ∈ {0, 1}, where yij = 1 means that
there is an (image) edge at ij ∈ Ex. The likelihood function P (z|x)
assume independent zero-mean Gaussian noise (for other noise models,
like shot noise, see Geiger and Yuille [14] and Black and Rangarajan
[3]). The prior P (x,y) encourages neighboring pixels i, j to have similar
intensity values xi ≈ xj except if there is an edge yij = 1. This prior
imposes piecewise smoothness, or weak smoothness, which is justified
by statistical studies of intensities and depth measurements (see Zhu
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and Mumford [51], Black and Roth [4]). More advanced variants of this
model will introduce higher order coupling terms of form yijykl into the
energy E(x,y) to encourage edges to group into longer segments which
may form closed boundaries.

The weak membrane model leads to a particularly hard inference
problem since it requires estimating continuous and discrete variables,
x and y , from P (x,y|z) ∝ P (z|x)P (x,y).

0.3 Mean Field Theory and Variational Methods

Mean field theory (MRT), also known as variational methods, offers a
strategy to design inference algorithms for MRF models. The approach
has several advantages: (I) It takes optimization problems defined over
discrete variables and converts them into problems defined in terms
of continuous variables. This enables us to compute gradients of the
energy and use optimization techniques that depend on them such as
steepest descent. In particular, we can take hybrid problems defined in
terms of both discrete and continuous variables, like the weak mem-
brane, and convert them into continuous optimization problems. (II)
We can use ’deterministic annealing’ methods to develop ’continua-
tion methods’ where we define a one-parameter family of optimization
problems indexed by a temperature parameter T . We can solve the
problems for large values of T (for which the optimization is simple)
and track the solutions to low values of T (where the optimization is
hard), see section (III-E). (III) We can show that MFT gives a fast
deterministic approximation to Markov Chain Monte Carlo (MCMC)
stochastic sampling methods, as described in section (V), and hence
can be more efficient that stochastic sampling. (IV) MFT methods can
give bounds for quantities such as the partition function log Z which
are useful for model selection problems, as described in [2].

0.3.1 Mean Field Free Energies

The basic idea of MFT is to approximate a distribution P (x|z) by
a simpler distribution B∗(x|z) which is chosen so that it is easy to
estimate the MAP estimate of P (.), and any other estimator, from
the approximate distribution B∗(.). This requires specifying a class of
approximating distributions {B(.)}, a measure of similarity between
distributions B(.) and P (.), and an algorithm for finding the B∗(.)
that minimizes the similarity measure.
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In this chapter, the class of approximating distributions are cho-
sen to be factorizable so that B(x) =

∏
i∈V bi(xi), where the b =

{bi(xi)} are pseudo-marginals which obey bi(xi) ≥ 0, ∀i, xi and∑
xi

bi(xi) = 1, ∀i. This means that the MAP estimate of x =
(x1, ..., xN) can be approximated by xi = arg maxxi

b∗(xi) once we
have determined B∗(x). But note that MFT can be extended to ’struc-
tured mean field theory, which allows more structure to the {B(.)},
see [2]. The similarity measure is specified by the Kullback-Leibler
divergence KL(B,P ) =

∑
x B(x) log B(x)

P (x)
which has the properties

that KL(B,P ) ≥ 0 with equality only if B(.) = P (.). It can be
shown, see section (III-B), that this is equivalent to a mean field
free energy F(B) which is a variational approximation to the free
energy F =

∑
x P (x)E(x) − ∑

x P (x) log P (x) of a physical system
described by P (x) = 1

Z
exp{−E(x)} [29]. The mean field approxima-

tion is obtained by substituting replacing B(.) with P (.) to obtain
F =

∑
x B(x)E(x)−∑

x B(x) log B(x).
For the first type of model we define the mean field free energy

FMFT(b) by:

FMFT(b) =
∑
ij∈E

∑
xi,xj

bi(xi)bj(xj)ψij(xi, xj)

+
∑
i∈V

∑
xi

bi(xi)φi(xi, z) +
∑
i∈V

∑
xi

bi(xi) log bi(xi). (0.4)

The first two terms are the expectation of the energy E(x, z) with
respect to the distribution b(x) and the third term is the negative
entropy of b(x). If the labels can take only two values – i.e. xi ∈ {0, 1}
– then the entropy can be written as

∑
i∈V{bi log bi+(1−bi) log(1−bi)}

where bi = bi(xi = 1). If the labels take a set of values l = 1, .., N , then
we can express the entropy as

∑
i∈V

∑M

l=1 bil log bil where bil = bi(xi = l)
and hence the {bil} satisfy the constraint

∑M

l=1 bil = 1, ∀i.
For the second (weak membrane) model we use pseudo-marginals

b(y) for the line processes y only. This leads to a free energy FMFT(b,x)
specified by:

FMFT(b,x) = τ
∑
i∈V

(xi − zi)2 + A
∑
ij∈E

(1− bij)(xi − xj)2

+B
∑
ij∈E

bij +
∑
ij∈E

{bij log bij + (1− bij) log(1− bij)}, (0.5)
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where bij = bij(yij = 1) (the derivation uses the fact that∑1

yij=0 bij(yij)yij = bij). As described below, this free energy is exact
and involves no approximations.

0.3.2 Mean Field Free Energy and Variational Bounds

We now describe in more detail the justifications for the mean field
free energies. For the first type of models the simplest derivations are
based on the Kullback-Leibler divergence which was introduced into the
machine learning literature by Saul and Jordan [35]. But the mean field
free energies can also be derived by related statistics physics techniques
[29] and there were early applications to neural networks [18], vision
[23] and machine learning [31].

Substituting P (x) = 1
Z

exp{−E(x)} and B(x) =
∏

i∈V bi(xi) into the
Kullback-Leibler divergence KL(B, P ) gives:

KL(B,P ) =
∑
x

B(x)E(x)+
∑
x

B(x) log B(x)+log Z = FMFT(B)+log Z.

(0.6)

Hence minimizing FMFT(B) with respect to B gives: (i) the best fac-
torized approximation to P (x), and (ii) a lower bound to the partition
function log Z ≥ minB FMFT(B) which can be useful to assess model
evidence [2].

For the weak membrane model the free energy follows from Neal
and Hinton’s variational formulation of the expectation maximization
EM algorithm [27]. The goal of EM is to estimate x from P (x|z) =∑

y P (x,y|z) after treating the y as ’nuisance variables’ which should
be summed out [2]. This can be expressed [27] in terms of minimizing
the free energy function:

FEM(B,x) = −
∑
y

B(y) log P (x,y|z) +
∑
y

B(y) log B(y). (0.7)

The equivalence of minimizing FEM[B,x] and estimating x∗ =
arg maxx P (x|z) can be verified by re-expressing FEM[B,x] as
− log P (x|z) +

∑
y B(y) log B(y)

P (y|x,z)
, from which it follows that the

global minimum occurs at x∗ = arg minx{− log P (x|z)} and B(y) =
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P (y|x∗, z) (because the second term is the Kullback-Leibler divergence
which is minimized by setting B(y) = P (y|x, z).

The EM algorithm minimizes FEM[B,x] with respect to B and x
alternatively, which gives the E-step and the M-step respectively. For
the basic weak membrane model both steps of the algorithm can be
performed simply. The E-step requires minimizing a quadratic function,
which can be performed by linear algebra, while the M-step can be
computed analytically:

Minimize wrt x {
∑

i

τ(xi − zi)2 + A
∑

(i,j)∈E

bij(xi − xj)2, (0.8)

B(y) =
∏

(i,j)∈E

bij(yij) bij =
1

1 + exp{−A(xi − xj)2 + B} . (0.9)

The EM algorithm is only guaranteed to converge to a local mini-
mum of the free energy and so good choices of initial conditions are
needed. A natural initialization for the weak membrane model is to
set x = z, perform the E-step, then the M-step, and so on. Observe
that the M-step corresponds to performing a weighted smoothing of
the data z where the smoothing weights are determined by the current
probabilities B(y) for the edges. The E-step estimates the probabilities
B(y) for the edges given the current estimates for the x.

Notice that the EM free energy does not put any constraints of the
form of the distribution B and yet the algorithm results in a factor-
ized distribution, see equation (9). This results naturally because the
variables that are being summed out – the y variables – are condi-
tionally independent (i.e. there are no terms in the energy E(x, z)
which couple yij with its neighbors). In addition we can compute
P (x|z) =

∑
y P (x,y|z) analytically to obtain 1

Z
exp{−τ

∑
i∈mD(xi −

zi)2 −
∑

ij∈mE g(xi − xj)}, where g(xi − xj) = − log{exp{−A(xi −
xj)2} + exp{B}}. The function g(xi − xj) penalizes xi − xj quadrat-
ically for small xi − xj but tends to a finite value asymptotically for
large |xi − xj|.

Suppose, however, that we consider a modified weak membrane
model which includes interactions between the line processes – terms
in the energy like C

∑
(ij)×(kl)∈Ey

yijykl which encourage lines to be con-
tinuous. It is now impossible either to: (a) solve for B(y) in closed form
for the E-step of EM, or (b) to compute P (x|y) analytically. Instead
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we use the mean field approximation by requiring that B is factorizable
– B(y) =

∏
ij∈E bij(yij). This gives a free energy:

FMFT(b,x) = τ
∑
i∈V

(xi − zi)2 + A
∑
ij∈E

(1− bij)(xi − xj)2

+B
∑
ij∈E

bij + C
∑

(ij)×(kl)∈Ey

bijbkl +
∑
ij∈E

{bij log bij + (1− bij) log(1− bij).(0.10)

.

0.3.3 Minimizing the Free Energy by Steepest Descent

The mean field free energies are functions of continuous variables (since
discrete variables have been replaced by continuous probability distri-
butions) which enables us to compute gradients of the free energy. This
allows us to use steepest descent algorithms, or variants like Newton-
Raphson. Suppose we take the MFT free energy from equation (4),
restrict xi ∈ {0, 1}, set bi = bi(xi = 1), then basic steepest descent can
be written as:

dbi

dt
= −∂FMFT

∂bi

,

= 2
∑

j

∑
xj

ψij(xi, xj)bj + φi(xi)− {bi log bi + (1− bi) log(1− bi)}.(0.11)

The MFT free energy decreases monotonically because dFMFT
dt

=∑
i

∂FMFT
∂bi

dbi

dt
= −∑

i{∂FMFT
∂bi

}2 (note that the energy decreases very
slowly for small gradients – because the square of a small number is
very small). The negative entropy term {bi log bi + (1− bi) log(1− bi)}
is guaranteed to keep the values of bi within the range [0, 1] (since the
gradient of the negative entropy equals log b1/(1 − bi) which becomes
infinitely large as bi 7→ 0 and bi 7→ 1).

There are many variants to steepest descent because we can mul-
tiply the gradient by any positive function and still ensure that the
MFT free energy decreases. These variants can be useful because
they can improve numerical stability. For example, we can set dbi

dt
=

−bi(1 − bi)∂FMFT
∂bi

and obtain dFMFT
dt

= −∑
i bi(1 − bi)∂FMFT

∂bi

2
. This

example is identical to the Hopfield analog network models [18] [45]
formulated by dui/dt = ∂F

∂bi
where ui = log bi/(1 − bi) or, equivalently,
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bi = 1/(1+exp{−ui}). This relates to a simplified model of neuroscience
where each neuron receives a set of inputs {bi} at its dendrites (from
other neurons), weights these inputs by ψ (the strength of the synapse),
sums the weighted inputs and pass them through a non-linear thresh-
old (at the soma of the neuron), and outputs the response as input to
other neurons. In practice, real neurons are considerably more compli-
cated but Hopfield’s model remains the mean field approximation to
the simplest ”artificial neuron model”.

Similarly we can perform steepest descent on the MFT free energies
for the second class of model yielding equations:

dxi

dt
= −∂FMFT(b,x)

∂xi

,

dbij(yij)
dt

= −∂FMFT(b,x)
∂bij(yij)

. (0.12)

Again we can modify these equations – for example, inserting a bij(1−
bij) term on the right hand side of the equation for dbij(yij)

dt
and using

the weak smoothness model (with line process interactions) gives the
Koch, Marroquin, Yuille (KMY) model [23].

Although steepest descent is an extremely popular technique it has
several practical problems. When implemented on a digital compute it
requires approximating the derivative dbi/dt by bi(t+∆)−bi(t)

∆
where ∆ is

a time step. But the choice of ∆ is not easy – if it is too large then the
algorithm will be unstable and fail to converge, but if it is too small
then convergence will be extremely slow. In addition, the stability will
depend on the largest gradient magnitude |∂FMFT

∂bi
| of all nodes i, so ∆

may need to be kept small just because of the size of the gradient at one
node. This suggests modifying the steepest descent rule so that none
of the gradients get too large – for example, the gradients of the MFT
free energy become very large as bi 7→ 0 and bi 7→ 1 because of the
entropy term and multiplying the gradient by bi(1 − bi) helps prevent
these changes from being too large. We refer to [32] for more details on
how to implement steepest descent efficiently.

0.3.4 Discrete Iterative Algorithms

Discrete iterative algorithms are designed to decrease the energy for
each iteration without needing a time-step parameter ∆. These algo-
rithms can also give large changes in the states at each iteration
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rather than ”hugging the energy surface” as local methods like steepest
descent tends to do. Historically they were first introduced by writing
down the fixed point conditions for the variational models and then
writing algorithms whose fixed points occurred at extrema of the free
energy. Such methods did not always converge. It was realized that
discrete iterative methods could be designed which always provably
decrease the energy at each iteration.

x
1

x
2

x
3

VARIATIONAL UPPER BOUNDS FOR MINIMIZATION

x
1

x
2

x
3 x

4

CONVEX+CONCAVE FUNCTION DECOMPOSITION

 

 

FUNCTION
CONVEX
CONCAVE

Figure 0.3 The steepest descent algorithm moves downhill in the direction of
the gradient (far left) but ”hugs the energy surface” and can get trapped (middle
left) in local minima of the energy function. Variational bounding requires finding a
bounding energy function at each iteration step and minimizing this bound – some
bounds are tighter than others (middle right). CCCP is a special case of variational
bounding which decomposes the energy function into a sum of a convex and a
concave part (far right) and uses this to construct a bound. Variational bounding
and CCCP perform large moves and can avoid some local minima.

We describe two strategies for obtaining discrete iterative algorithms
(DIA) to minimize any cost function E(x) (e.g., a free energy). The
first is variational bounding [34],[21], also known as majorization [9],
and the second is CCCP [50] CCCP is a special case but nevertheless
seems to include most DIA’s obtained by variational bounding and
existing algorithms (e.g., EM, generalized iterative scaling, Sinhkorn’s
algorithm) [50].

We define variational bounding as follows. Suppose we want to mini-
mize E(x). Let us be at xt at iteration step t. We construct a bounding
function Eb(x : xt), so that Eb(xt : xt) = E(xt) and E(x) ≤ Eb(x,xt).
Then choose the next state xt+1 so that Eb(xt+1 : xt) ≤ Eb(xt : xt)
which implies that E(xt+1) ≤ E(xt). Variational bounding is useful
because it is often practical to find bounding functions Eb(x : xt) which
can be minimized so that xt+1 = arg minE(x : xt) [34],[21],[9].

CCCP is a special case of variational bounding. It can be shown that
almost all functions E(x) can be decomposed as a sum of a convex
Evex(x) and concave Ecave(x) function [50]. It follows, from properties
of convexity, that Eb(x : xt) = Evex(x)+Ecave(xt)+(x−xt) · ∂Ecave

∂x
(xt)
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is a bounding function (as for variational bounding). We can min-
imize Eb(x,xt) by the CCCP procedure by choosing xt+1 so that
∂Evex

∂x
(xt+1) = −∂Ecave

∂x
(xt).

For free energies, the entropy term is convex and the remaining term
will be concave provided ψij(xi, xj) is positive definite. This can often
be imposed by rewriting the original energy function to include ’diago-
nal’ pairwise terms ψii(xi, xi) which are then ’subtracted’ by changing
the unary potentials φi(xi). It is always possible to pick diagonal terms
to be sufficiently large so that log ψij(xi, xj) (see [47]). For example,
consider the Ising model with E(x) =

∑
ij Tijxixj +

∑
i θixi. We can

write this as E(x) =
∑

ij Tijxixj − α
∑

i x2
i +

∑
i θixi + α

∑
i xi, where

α is chosen to be large enough so that the first two terms are negative
definite (e.g. make α bigger than the largest positive eigenvalue of the
matrix T = {Tij}). This does not alter the distribution but will alter
the mean field approximation.

This gives a DIA update equation:

bt+1
i (xi) =

exp{−∑
j

∑
xj

ψij(xi, xj)bt
j(xt)− φi(xi)}∑

zi
exp{−∑

j

∑
zj

ψij(zi, zj)bt
j(zt

j)− φi(zi)} . (0.13)

where the denominator is used to impose the constraint that∑
xi

bi(xi) = 1, ∀i.
We can also apply DIA’s in combination with other optimization

methods. For example, for the weak membrane free energy we can
define an two step algorithms where the first step applies a DIA to
update the bij(yij) and the second step solves the linear equations (8)
for x. More generally, we can alternate DIA on b with any algorithm
on x that is guaranteed to decrease the energy at each iteration.

0.3.5 Temperature and Deterministic annealing

So far we have concentrated on using MFT to estimate the marginal
distributions. We now describe how MFT can attempt to esti-
mate the most probable states of the probability distribution x∗ =
arg maxx P (x). The strategy is to introduce a temperature parameter
T and a family of probability distributions related to P (x). (Refer to
chapter by Weiss!!).

More precisely, we define a one-parameters family of distributions
∝ {P (x)}1/T where T is a temperature parameter (the constant of
proportionality is the normalization constant). This is equivalent to
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specifying Gibbs distributions P (x;T ) = 1
Z(T )

exp{−E(x)/T}, where
the default distribution P (x) occurs at T = 1. The key observation is
that as T 7→ 0, the distribution gets strongly peaked about the state
x∗ = arg minx E(x) with lowest energy (or states if there are two or
more global minima). Conversely, at T 7→ ∞ all states will become
equally likely and P (x; T ) will tend to the uniform distribution.

GIBBS DISTRIBUTION VS. TEMPERATURE

 

 

T = 0.5
T = 2.0
T = 10.0

Figure 0.4 The probability distribution {P (x)}1/T gets sharply peaked as T 7→ 0
and tends to a uniform distribution for large T (left). The mean field free energy F
is convex for large T and becomes less smooth as T decreases (right). This motivates
simulated annealing and deterministic annealing, which is related to graduated non-
convexity. For some models, there are phase transitions where the minima of the
free energy change drastically at a critical temperature Tc.

Introducing this temperature parameter modifies the free energies
by multiplying the entropy term by T . For example, we modify
equation (4) to be

FMFT()
¯

=
∑
ij∈E

∑
xi,xj

bi(xi)bj(xj)ψij(xi, xj)

+
∑
i∈V

∑
xi

bi(xi)φi(xi, z) + T
∑
i∈V

∑
xi

bi(xi) log bi(xi). (0.14)

Observe that for large T , the convex entropy term will dominate the
free energy causing it to become convex. But for small T , the remain-
ing terms dominate. In general, we expect that the landscape of the
free energy will become smoothed as T increases and in some cases it
is possible to compute a temperature Tc above which the free energy
has an obvious solution [12]. This motivates a continuation approach
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known as deterministic annealing which involves minimizing the free
energy at large temperatures and using this to provide initial conditions
for minimizing the free energies at smaller temperatures. In practice,
the best results often require introducing temperature dependence into
the parameters [12]. At sufficiently small temperatures the global min-
ima of the free energy can approach the MAP estimates but technical
conditions need to be enforced, see [47].

Deterministic annealing was motivated by simulated annealing [22]
performs stochastic sampling, see section (V) from the distribution
P (x; T ) gradually reducing T , so that eventually the samples come
form P (x : T = 0) and hence correspond to the global minimum x =
arg minx E(x). This approach is guaranteed to converge [16] but the
theoretically guaranteed rate of convergence is impractically slow and
so, in practice, rates are chosen heuristically. Deterministic annealing
is also related to the continuation techniques described in Blake and
Zisserman [5] to obtain solutions to the weak membrane model.

0.4 Bethe Free Energy and Belief Propagation

We now present a different approach to estimating (approximate)
marginals and MAPs of an MRF. This is called belief propagation BP.
It was originally proposed as a method for doing inference on trees (e.g.
graphs without closed loops) [30] for which it is guaranteed to converge
to the correct solution (and is related to dynamic programming). But
empirical studies showed that belief propagation will often yield good
approximate results on graphs which do have closed loops [26].

To illustrate the advantages of belief propagation, consider the binoc-
ular stereo problem which can be addressed by using the first type of
model. For binocular stereo there is the epipolar line constraint which
means that, provided we know the camera geometry, we can reduce the
problem to one-dimensional matching, see figure (2). We impose weak
smoothness in this dimension only and then use dynamic programming
to solve the problem [15]. But a better approach is to impose weak
smoothness in both directions which can be solved (approximately)
using belief propagation [38], see figure (2).

Belief propagation is related to the Bethe Free energy [11]. This free
energy, see equation (20), appears better than the mean field theory free
energy because it includes pairwise pseudo-marginal distributions and
reduces to the MFT free energy if these are replaced by the product
of unary marginals. But, except for graphs without closed loops (or
a single closed loop), there are no theoretical results showing that the
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Bethe free energy yields a better approximation than mean field theory.
There is also no guarantee that BP will converge for general graphs.

0.4.1 Message Passing

BP is defined in terms of messages mij(xj) from i to j, and is specified
by the sum-product update rule:

mt+1
ij (xj) =

∑
xi

exp{−ψij(xi, xj)− φi(xi)}
∏
k 6=j

mt
ki(xi). (0.15)

The unary and binary pseudomarginals are related to the messages
by:

bt
i(xi) ∝ exp{−φi(xi)}

∏
k

mt
kj(xj), (0.16)

bt
kj(xk, xj) ∝ exp{−ψkj(xk, xj)− φk(xk)− φj(xj)}

×
∏
τ 6=j

mt
τk(xk)

∏
l 6=k

mt
lj(xj). (0.17)

The update rule for BP is not guaranteed to converge to a fixed
point for general graphs and can sometimes oscillate wildly. It can be
partially stabilized by adding a damping term to equation (15). For
example, by multiplying the right hand side by (1 − ε) and adding a
term εmt

ij(xj).
To understand the converge of BP observe that the pseudo-marginals

b satisfy the admissibility constraint :

∏
ij bij(xi, xj)∏
i bi(xi)ni−1

∝ exp{−
∑
ij

ψij(xi, xj)−
∑

i

φ(xi)} ∝ P (x), (0.18)

where ni is the number of edges that connect to node i. This means that
the algorithm re-parameterizes the distribution from an initial specifi-
cation in terms of the φ, ψ to one in terms of the pseudo-marginals b.
For a tree, this re-parameterization is exact (i.e. the pseudo-marginals
become the true marginals of the distribution – e.g., we can repre-
sent a one-dimensional distribution by P (x) = 1

Z
{−∑N−1

i=1 ψ(xi, xi+1)−∑N

i=1 φi(xi)} or by
∏N−1

i=1 p(xi, xi+1)/
∏N−1

i=2 p(xi).
It follows from the message updating equations (15,17) that at

convergence, the b’s satisfy the consistency constraints:
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Figure 0.5 Message passing (left) is guaranteed to converge to the correct solu-
tion on graphs without closed loops (center) but only gives good approximations on
graphs with a limited number of closed loops (right).

∑
xj

bij(xi, xj) = bi(xi),
∑
xi

bij(xi, xj) = bj(xj). (0.19)

This follows from the fixed point conditions on the messages
– mkj(xj) =

∑
xk

exp{−φk(xk)} exp{−ψjk(xj, xk)}
∏

l 6=j mlk(xk)
∀k, j, xj.

In general, the admissibility and consistency constraints characterize
the fixed points of belief propagation. This has an elegant interpretation
within the framework of information geometry [19].

0.4.2 The Bethe Free Energy

The Bethe free energy [11] differs from the MFT free energy by
including pairwise pseudo-marginals bij(xi, xj):

F [b; λ] =
∑
ij

∑
xi,xj

bij(xi, xj)ψij(xi, xj) +
∑

i

∑
xi

bi(xi)φi(xi)

+
∑
ij

∑
xi,xj

bij(xi, xj) log bij(xi, xj)−
∑

i

(ni − 1)
∑
xi

bi(xi) log bi(xi),(0.20)

But we must also impose consistency and normalization constraints
which we impose by lagrange multipliers {λij(xj)} and {γi}:
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∑
i,j

∑
xj

λij(xj){
∑
xi

bij(xi, xj)− bj(xj)}

+
∑
i,j

∑
xi

λji(xi){
∑
xj

bij(xi, xj)− bi(xi)}+
∑

i

γi{
∑
xi

bi(xi)− 1}.(0.21)

It can be shown [43] (differentiate with respect to b) that the extrema
of the Bethe free energy also obey the admissibility and consistency con-
straints. Hence the fixed points of belief propagation must correspond
to extrema of the Bethe free energy.

0.4.3 Where do the messages come from? The dual
formulation.

Where do the messages in belief propagation come from? At first glance,
they do not appear directly in the Bethe free energy. But observe that
the consistency constraints are imposed by lagrange multipliers λij(xj)
which have the same dimensions as the messages.

We can think of the Bethe free energy as specifying a primal problem
defined over primal variables b and dual variables λ. The goal is to min-
imize F [b; λ] with respect to the primal variables and maximize it with
respect to the dual variables. There corresponds a dual problem which
can be obtained by minimizing F [b; λ] with respect to b to get solutions
b(λ) and substituting them back to obtain F̂d[λ] = F [b(λ);λ]. Extrema
of the dual problem correspond to extrema of the primal problem (and
vice versa).

It is straightforward to show that minimizing F with respect to the
b’s give the equations:

bt
i(xi) ∝ exp{−1/(ni − 1){γi −

∑
j

λji(xi)− φi(xi)}},(0.22)

bt
ij(xi, xj) ∝ exp{−ψij(xi, xj)− λt

ij(xj)− λt
ji(xi)}. (0.23)

Observe the similarity between these equations and those specified
by belief propagation, see equations (15). They become identical if we
identify the messages with a function of the λ’s:

λji(xi) = −
∑

k∈N(i)/j

log mki(xi). (0.24)
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There are, however, two limitations of the Bethe free energy. Firstly
it does not provide a bound of the partition function (unlike MFT)
and so it is not possible to using bounding arguments to claim that
Bethe is ’better’ than MFT (i.e. it is not guaranteed to give a tighter
bound). Secondly, Bethe is non-convex (except on trees) which has
unfortunate consequences for the dual problem – the maximum of the
dual is not guaranteed to correspond to the minimum of the primal.
Both problems can be avoided by an alternative approach, described
in Weiss’s chapter!! which gives convex upper bounds on the partition
function and specifies convergent (single-loop) algorithms.

0.4.4 Double Loop Minimization of the Bethe Free Energy

We can attempt to minimize the Bethe free energy directly by speci-
fying an algorithm which acts directly on the b’s. For example, we can
apply steepest descent or CCCP/variational bounding. This requires
working with variables that have higher dimensions than the messages
(contrast bij(xi, xj) with mij(xj)). But it is easier to obtain conver-
gence results guaranteeing that the algorithms will converge to, at
least, a local minimum of the Bethe free energy. These theoretical
results, however, come with caveats which must be addressed. Steepest
descent will require specifying a time constant ∆ and convergence is
only guaranteed if ∆ is sufficiently small.

It is straightforward to apply CCCP and decompose the free energy
into a sum of convex and concave parts [49] because the entropy terms
are convex or concave in the pseudomarginals (depending on their sign)
while the energy terms are linear in the pseudomarginals and hence
both convex and concave. This gives many possible decompositions
from which we can construct a convex bounding energy for each time
step [17]. But the consistency constraints make it impossible to min-
imize the convex energy function analytically and instead a convex
minimization algorithm is required. This gives a double loop algorithm
[49] where the inner loop performs this convex minimization for each
step of the outer loop. By contrast, for the CCCP example given in
equation (13) there is no need for an inner loop between we can obtain
a closed form solution for the minimum of the energy bound. Empiri-
cally studies [49][17] show that double loop algorithms are stable and
can give better solutions than belief propagation but may require more
computation time.
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0.5 Stochastic Inference

Stochastic sampling methods – markov chain monte carlo (MCMC)
– can also be applied to obtain samples from an MRF which can be
used to estimate states. For example, Geman and Geman [16] used
simulated annealing – MCMC with changing temperature – to perform
inference on the weak smoothness model. As we describe, stochastic
sampling is closely related to MFT and BP. Indeed both can be derived
as deterministic approximations to MCMC.

0.5.1 MCMC

MCMC is a stochastic method for obtaining samples from a probabil-
ity distribution P (x). It requires choosing a transition kernel K(x|x′)
which obeys the fixed point condition P (x) =

∑
x′ K(x|x′)P (x′). In

practice, the kernel is usually chosen to satisfy the stronger detailed bal-
ance condition P (x)K(x′|x) = K(x|x′)P (x′) (the fixed point condition
is recovered by taking

∑
x′). In addition the kernel must satisfy addi-

tional conditions K(x|x′) ≥ 0,
∑

x K(x|x′) = 1 ∀x′, and for any pair
of states x,x′ it must be possible to find a trajectory {xi : i = 0, .., N}
such that x = x0, x′ = xN , and K(xi+1|xi) > 0 (i.e. you have a non-
zero probability of moving between any two states by a finite number
of transitions).

This defines a random sequence x0, x1, ...., xn where x0 is specified
and xi+1 is sampled from K(xi+1|xi). It can be shown that xn will tend
to a sample from P (x) as n 7→ ∞. (The convergence rate is exponential
in the magnitude of the second largest eigenvalue of K(.|.) – but this
eigenvalue can almost never be calculated).

The Gibbs sampler is one of the most popular MCMCs, partly
because it is so simple. It has transition kernel K(x|x′) =∑

r ρ(r)Kr(x|x′), where ρ(r) is a distribution on the lattice site(s) r
(usually ρ(.) is the uniform distribution) and is formally specified by:

Kr(x|x′) = P (xr|x′N(r))δx/r,x′
/r

.

The Gibbs sampler proceeds by first picking a lattice site(s) at ran-
dom from ρ(.) and then sampling the state xr of the site from the
conditional distribution P (xr|x′N(r)). As we will illustrate below, the
conditional distribution will take a simple form for MRFs and so sam-
pling from it is usually straightforward. It can easily be checked that
the Gibbs sampler satisfies the detailed balance conditions.

For example, consider the binary-values case with xi ∈ {0, 1} and
with potentials ψij(xi, xj) = ψijxixj and φi(xi) = φixi. The MFT
update (using DIA) and the Gibbs sampler are respectively given by:
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bt+1
i =

1
1 + exp{2∑

j ψijbt
j + φi} ,

xt+1
i is sampled from P (xi|x/i) =

1
1 + exp{xi(

∑
j ψijxj + φi)} . (0.25)

Equation (25) shows that the updates for Gibbs sampling are very
similar to the updates for MFT. A classic result, reviewed in [1], shows
that MFT can be obtained by taking the expectation of the update for
the Gibbs sampler. In the next section we will report a similar result
for belief propagation.

The Metropolis-Hastings sampler is the most general transition
kernel that satisfies the detailed balance conditions. It is of form:

K(x|x′) = q(x|x′)min{1,
p(x)q(x′|x)
p(x′)q(x|x′)}, for x 6= x′. (0.26)

Here q(x|x′) is a proposal probability (which only obeys relaxed con-
ditions). The sampler proceeds by selecting a possible transition x′ 7→ x
from the proposal probability q(x|x′) and accepting this transitions
with probability min{1, p(x)q(x′|x)

p(x′)q(x|x′)}. A key advantage of this approach
is that it only involves evaluating the ratios of the probabilities P (x)
and P (x′) which are typically simple quantities to compute (see the
examples below).

In many cases, the proposal probability is selected to be a uniform
distribution over a set of possible states. For example, for the first
type of model we let the proposal probability choose a site i at a new
state value x′i at random (from uniform distributions) which proposes
a new state x′. We always accept this proposal if E(x′) ≤ E(x) and we
accept it with probability exp{E(x) − E(x′)} if E(x′) > E(x). Hence
each iteration of the algorithm usually decreases the energy but there
is also the possibility of going uphill in energy space, which means it
can escape the local minima which can trap steepest descent methods.
But it must be realized that an MCMC algorithm converges to samples
from the distribution P (x) and not to a fixed states, unless we perform
annealing by sampling from the distribution 1

Z[T ]
P (x)1/T and letting T

tend to zero. As discussed in section (III-E), annealing rates must be
determined by trial and error since the theoretical bounds are too slow.
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In general, MCMC is usually slow unless problem specific knowledge
is used. Gibbs sampling is popular because it very simple and easy to
program but can only exploit a limited amount of knowledge. Most
practical applications use Metropolis-Hastings with proposal probabil-
ities which exploit knowledge of the problem. In computer vision, data
driven Markov Chain Monte Carlo (DDMCMC) [39][40] shows how
effective proposal probabilities can be, but this work is beyond the
scope of this chapter. For a detailed introduction to advanced MCMC
methods see [25].

0.5.2 Relationship between Gibbs sampling and Belief
Propagation

We now show the relationship between Gibbs sampling and belief prop-
agation. We define an update rule on the probability distribution µt(x)
(analogous to MCMC) by:

µt+1(x) =
∑
x′

K(~x|x′)µt(x′). (0.27)

Observe that the fixed points of this update rule are µt(x) = P (x)
and that MCMC is a way to implement this equation by sampling. Sub-
stituting the Gibbs sampler into these equations (27) and marginalizing
yields the update equations:

µt+1(xr) =
∑

x′
N(r)

P (xr|x′N(r))µ
t(~x′N(r)). (0.28)

As described in [33], the pseudomarginals b(xr) can be used to con-
struct estimates of the local probability B(xN(r)) over larger subregions
of the graph. Replacing µ(xr) by b(xr) and µ(xN(r)) by B(xN(r)) gives:

bt+1(xr) =
∑

~x′
N(r)

P (xr|x′N(r))B
t(~x′N(r)) ∀r ∈ ΛA. (0.29)

It can be shown [33] that this corresponds to BP (by converting
the update equation for the messages to an update equation on the
beliefs). Hence both MFT and BP can be related to deterministic
approximations to MCMC. This raises the issue about how best to
combine MCMC with MFT/BP methods, which is an important topic
for future research.
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0.6 Discussion

This chapter described mean field theory and belief propagation tech-
niques for performing inference ”of marginals” on MRF models. We
discussed how these method could be formulated in terms of minimiz-
ing free energies, such as mean field free energies and the Bethe free
energies. See [43] for extensions to the Kikuchi free energy and the
chapter by Weiss!! for convex free energies. We describe a range of
algorithms that can be used to perform minimization. This includes
steepest descent, discrete iterative algorithms, and message passing.
We showed how belief propagation could be described as dynamics in
the dual space of the primal problem specified by the Bethe free energy.
We introduce a temperature parameter which enables inference meth-
ods to obtain MAP estimates and also motivates continuation methods,
such as deterministic annealing. We briefly describe stochastic MCMC
methods, such as Gibbs sampling and Metropolis-Hastings, and show
that mean field algorithms and belief propagation can both be thought
of as deterministic approximations to Gibbs sampling.

There have been many extensions to the basic methods described
in this chapter. We refer to [2] for an entry into the literature on
structured mean field methods, expectation maximization, and the
trade-offs between these approaches. Other recent variants of mean
field theory methods are described in [33]. Recently CCCP algorithms
have been shown to be useful for learning latent structural SVMs with
latent variables [44]. Work by Felzenszwalb and Huttenlocher [13] shows
how belief propagation methods can be made extremely fast by taking
advantage of properties of the potentials and the multi-scale proper-
ties of many vision problems. Researchers in the UAI community have
discovered ways to derive generalizations of BP starting from the per-
spective of efficient exact inference [8]. Convex free energies introduced
by Wainwright et al [42] have nicer theoretical properties that the Bethe
free energy and have led to alternatives to BP, such as TRW and prov-
ably convergent algorithms– see Weiss chapter!! Stochastic sampling
techniques such as MCMC remains a very active area of research, see
[25] for an advanced introduction to techniques such as particle filtering
which have had important applications to tracking [6]. The relationship
between sampling techniques and deterministic methods is an interest-
ing area of research and there are successful algorithms which combine
both aspects. For example, there are recent nonparametric approaches
which combine particle filters with belief propagation to do inference
on graphical models where the variables are continuous valued [37][20].
It is unclear, however, whether the deterministic methods described in
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this chapter can be extended to perform the types of inference that
advanced techniques like data driven MCMC can perform [39][40].
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