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Scaling Theorems for Zero Crossings

ALAN L. YUILLE anp TOMASO A. POGGIO

Abstract—We characterize some properties of the zero crossings of
the Laplacian of signals—in particular images—filtered with linear fil-
ters, as a function of the scale of the filter (extending recent work by
Witkin [16]). We prove that in any dimension the only filter that does
not create generic zero crossings as the scale increases is the Gaussian.
This result can be generalized to apply to level crossings of any linear
differential operator: it applies in particular to ridges and ravines in
the image intensity. In the case of the second derivative along the gra-
dient, there is no filter that avoids creation of zero crossings, unless the
filtering is performed after the derivative is applied.

Index Terms—Gaussian filters, scale space, zero crossing.

I. INTRODUCTION

N most physical phenomena, changes in spatial or tem-

poral structure occur over a wide range of scales. Im-
ages are no exception: changes in light intensity reflect
the many spatial scales at which visible surfaces are or-
ganized. It seems intuitive that a great deal of information
can be gained by an analysis of the changes in a signal at
different scales. For instance, graphs of one-dimensional
functions are a very effective tool for describing complex
systems. An important reason is that they allow direct vi-
sual access to important properties of the data, chiefly to
their changes over different scales.

The idea of scale is critical for a symbolic description
of the significant changes in images or other types of sig-
nals. Changes must be detected at different levels of detail
and over different extents. In general, different physical
processes may be associated with a characteristic behav-
jor across different scales. In an image, changes of inten-
sity take place at many spatial scales depending on their
physical origin. A multiscale analysis, tracing the behavior
of some feature of the signal across scales, can reveal pre-
cious information about the nature of the underlying phys-
ical process. In images, for instance, spatial coincidence
at all scales of zero crossings in the Laplacian of the in-
tensity values filtered with a Gaussian mask may signal a
physical “edge” distinct from surface markings or shad-
ows. Not only is it necessary to detect and describe
changes in a signal at different scales, but in addition,
much useful information can be obtained by combining
descriptions across scales.

The importance of this idea has been clearly realized in
the field of vision. One of the main contributions of visual
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psychophysics in the last 10 years was indeed to show that
visual information is processed in parallel by a number
(perhaps a continuum) of spatial-frequency-tuned chan-
nels [3]. The bulk of the data demonstrates that the visual
system analyzes the image at different resolutions. Phys-
iological experiments are consistent with the psychophys-
ics. They suggest that, in the visual pathway, spatial filters
of different sizes operate at the same location. Further-
more, psychophysics, physiology, and anatomy all show
that the spatial grain of analysis continuously changes from
foveal to peripheral locations. Receptive and dendritic field
sizes of both retinal and cortical neurons increases mon-
otonically with eccentricity, in agreement with the depen-
dency on eccentricity of the psychophysical channels.

In the field of computer vision, Rosenfeld was one of
the first to explicitly propose an edge detection scheme
based on multiscale analysis performed with filters of dif-
ferent sizes [13]. A similar algorithm was suggested by
Marr [8] although with different goals and motivations.
More recently, he has strongly advocated the use of de-
rivatives of Gaussian-shaped filters of different sizes with
the goal of detecting changes in intensity at different scales
[9]. The idea was first proposed in the context of a theory
of stereomatching [11]. In that scheme, analysis at the dif-
ferent scales was effectively kept separate. Later, Marr
and Hildreth [10] proposed some heuristical rules to com-
bine information from the different channels. However, the
important problem of how to combine effectively the dif-
ferent scales of analysis at this early level has remained
open, although recent work by Terzopoulos [15] has suc-
cessfully applied multilevel algorithms to the problem of
reconstructing visual surfaces (see also the work by Rich-
ards et al. [12], Crowley [6], and by Canny [4] on edge
detection).

Recently a new way of describing zero crossings across
scale was suggested by Witkin [16]. A one-dimensional
(1-D) signal is smoothed by convolution with a small
(large) Gaussian filter and the zeros of the second deriv-
ative are localized and followed as the size of the filter
increases (decreases). This procedure originates a plot of
the zero contours in the x—¢ plane (where ¢ measures the
size of the Gaussian filter)." In this way, Witkin was able
to classify and label zero crossings achieving an effective
description of a signal for purposes of recognition and reg-
istration. This is possible mainly because the geometry of
the zero-crossings contours is surprisingly simple. Zero

'Stansfield first described the idea of plotting zero crossings over scale—
for analyzing commodities trends [14]—but did not develop it.
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crossings contours are either lines from small to very large
scale or closed, bowl-like shapes. Zero crossings are never
created as the scale increases. Babaud et al. [1] obtained
the striking result that the Gaussian filter is the only filter
with this remarkable property in 1-D.

This property of the Gaussian filter is important for two
reasons: first, it allows coarse-to-fine tracking of zero
crossings in scale space and, second, it ensures that the
scale-space diagram contains, in some sense, a minimal
number of zero crossings (for ¢ = 0 the number of zero
crossing is determined by the signal; see condition 3) in
Section II).

We have independently succeeded in obtaining a proof
of this result and extended it to two dimensions (and in
fact any number of dimensions). We have also obtained
related results for zero and level crossings of other differ-
ential operators, in particular for ridges and ravines in the
image intensity. The work described here was reported in
[17].2

The 2-D result is important because it 1) lays the nec-
essary mathematical foundation for using multiresolution
labels for classifying zero crossings for a symbolic de-
scription of intensity changes, and 2) justifies the use of
Gaussian filters and an associated linear derivative be-
cause of their ““nice” properties under changes in scale.

In this paper, we will first state and prove the 1-D re-
sult. We will then show that only a specific 2-D extension
is valid. Zero crossings of linear derivatives have the ““nice
scaling behavior” if and only if the image is filtered by a
2-D rotationally symmetric Gaussian. In particular, the
Laplacian of a Gaussian filter suggested by Marr and Hil-
dreth [10] has nice scaling behavior. The second direc-
tional derivative along the gradient, however, does not: no
filter exists that can ensure a nice scaling behavior of the
zeros of this derivative. We have then the following re-
sults:

1) forlinear derivative operations—in particular, for the
Laplacian—the Gaussian is the only filter with a nice scal-
ing behavior, and

2) for the nonlinear directional derivative, no filter will
give nice scaling behavior.

II. ASSUMPTIONS AND RESULTS

We will consider filtering the image / with a suitable
filter F and then consider the behavior of the zero cross-
ings as we change the scale of the filter. We make five
assumptions about the filter, and impose them as condi-
tions.

1) Filtering is shift invariant and, hence, a convolution.
We write this as

Fx*lIx) = SF(x-— $)I(L) d

’In an interesting manuscript, that came only recently to our attention,
Koenderink, Huys, and Toet (preprint, 1983) discuss multiscale resolution
of images using the Gaussian filter and the diffusion equation. Koenderink
(personal communication, 1984) has obtained results similar to ours by ex-
ploiting properties of the diffusion equation.

Fig. 1. See text.
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Fig. 2. See text.

2) The filter has no preferred scale. In two dimensions,
standard results of dimensional analysis [2] give F(x, o)
= (1/0%) f(x/0) where o is the scale of the filter. The factor
1/0* ensures that the filter is properly normalized at all
scales.

3) The filter recovers the whole image at sufficiently
small scales. This is expressed by lim, o, F(x, 0) = 6(x)
where 6(x) denotes the Dirac delta function.

4) The position of the center of the filter is independent
of 0. Otherwise, zero crossings of a step edge would
change their position with change of scale.

5) The filter goes to zero as |x| = oo and as ¢ — oo.

As will become apparent, our results are independent
of scaling the x axis. We usually require that we scale this
axis so that the filter is radially symmetric, and state theo-
rems for radially symmetric filters. However, we can relax
this requirement by rescaling the axes.

Fig. 1 shows the typical scaling behavior of zero cross-
ings in one dimension observed by Witkin. Fig. 2 shows
possible behavior of zero crossings which is never empir-
ically observed when the filter is a Gaussian. The generic
properties of the zero-crossings curve in the (x, o) plane
can be derived from the implicit function theorem [5]. To
yield a C” curve (i.e., with continuous derivatives up to
the rth order), the theorem requires that the Laplacian of
the filtered image is C". Therefore, the filter must be rea-
sonably smooth. Observe that filtering with a Gaussian
will ensure a C* output for all images, because solutions
of the heat equation are entire functions and the Gaussian
kernel is the Green functon of the heat equation. The im-
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plicit function theorem may break down at degenerate
critical points when all first derivatives of the filtered im-
age vanish together with the Hessian.® These points are
nongeneric in the sense that a small perturbation in the
signal will destroy them. Observe that “true” zero cross-
ings (i.e., “simple” zeros, see [7]) can only disappear in
pairs in the x, ¢ plane. Only trivial zeros that do not cross
zero can disappear by themselves. They are, however,
nongeneric. In-this paper we only consider generic zero
and level crossings.

In one dimension, the zero crossings in the second de-

rivative of f obey
| ("—;—% 1) dt

where f” is the second derivative of f.
Equation (2.1) gives x as an implicit function of o, i.e.,
x = x(0). If we vary x and o so that (2.1) is still satisfied,

we obtain
Y (s
dx —o0o ag ag
— = = . Q2
do X —
S_mf”' (T) 1(§) d¢

So the tangent to the curve is uniquely defined at a point,
as are all the higher order derivatives. This prevents the
behavior shown in Figs. 2(b) and (c) (Fig. 2(d) is meant
to trigger some thoughts in our readers) with the possible
exception of the nongeneric cases, when the implicit func-
tion theorem breaks down.

The curve in Fig. 2(a) is more interesting because it
corresponds to a pair of zero crossings being “created”
as the scale (i.e., o) increases. The implicit function theo-
rem does not rule out this case. It therefore seems natural
to require a filter such that this never occurs. In the fol-
lowing three sections, we will prove some theorems show-
ing that such a filter can only be a Gaussian and, more-
over, that not all differential zero-crossings operators can
have this property. More precisely, we prove the following
theorems.

Theorem 1: In one dimension, with the second deriva-
tive, the Gaussian is the only filter obeying our five con-
ditions which never creates zero crossings as the scale in-
creases.

Theorem 2: In two dimensions, with the Laplacian op-
erator, the Gaussian is the only filter obeying the condi-
tions which never create zero crossings as the scale in-
creases.

Theorem 3: In two dimensions, with the directional de-
rivative along the gradient, there is no filter obeying the
conditions which never creates zero crossing as the scale
increases. -

In Section V, we show that results similar to theorems
1 and 2 can be extended to all linear differential operators
(in particular, directional derivatives) and, therefore, to

0= 2.1

3Zeros of the Hessian correspond to zeros of the Gaussian curvature.
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other features of the image, such as ravines and ridges
(but not peaks) in the image intensity function. These
theorems can be extended to any dimension, but we will
not give these extensions here.

It should be emphasized that, although zero crossings
can only annihilate themselves in pairs as ¢ increases, the
intensity change corresponding to a zero crossing could
become arbitrarily smaller with increasing sigma. The zero
crossing would then become so weak that for practical
purposes the curve terminates.

III. THE 1-D CaAse

Let the image be I and the filter be F. We consider the
zero crossings in the filtered image.
Fx = 9 I() 4.

F#*Ix) = S (3.1

Denote (d?/dx®)(F * I) by E. Hence, the zero crossings
are the solutions of

Ex) = 0. 3.2)

These form curves in the x—o plane. The condition that

zero crossings are not created at larger scales is that for

all such curves a(x) the extrema of o(x) are not minima.

Hence, for all points x, such that ¢’(x,) = 0, we require
that " (x,) < O.

Let ¢ be a parameter along a curve in o—-x space. Then

dE _OEdx  OEdo
dt oxdt Oadt’
On a curve of zero crossings, E = 0, and so dE/dt = 0

along the curve. We can choose the parameter ¢ to be x.
Then, using the implicit function theorem, we obtain

(3.3)

do _ —E, 3.4
dx E, 3-4)
This derivative vanishes at x, if and only if
Efx,) =0 (3.5)
and we calculate, at places where (3.5) holds
d’o(x,)  —E.(x,)
= =2 3.6
dx® E,(x,) G0
Thus, our filter must be such that if
E(x;) = Exx,) =0 (3.7
then
Eq(x,)
— >0 3.8)
E,(x,)
The heat equation can be written as
E _10E
— = - 3.9
x> g do -9

Note that by the substitution ¢ = 0*/2, we obtain the
standard heat equation. If the filter F is a Gaussian
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F) = - _ng 3.10

) 5 P53 (3.10)
then it will obey the heat equation of which it is the Green
function [(3.1) is the Green superposition integral associ-
ated with the heat equation] and hence E(x) will also obey
the equation. Thus, E./E, = 1/¢ and so a Gaussian filter
will always satisfy conditions (3.7) and (3.8).

We now show that Gaussian is the only filter which sat-
isfies the conditions and obeys the conditions specified in
Section I.

Consider an image which is the sum of delta functions

KO=§&M—Q- 3.11)

It is possible to generate any image in this way by taking
the limit as n = oo, Set

Tx) = Fxx(.x).

(3.12)

Equations (3.7)and (3.8) yield
§ AT(x, — &) =0 (3.13)
2 AT(x, — &) =0 (3.14)

i=1

and
E;l=1/‘1iT,\:t(xo =)
Li-1ATox, — §)
We can construct a counter example if we can solve the

simultaneous equations for any x,, ¢, - - *, {, and any
positive I

> 0.

(3.15)

n

2 AT, = §) =0 (3.16)
2 AT (x, = §) = 0 (3.17)
2 AT, x, = &) = I (3.18)
;l ATo(x, — §) = 1 (3.19)

We can write these as a matrix equation

Tx, — &) “T(x, — &) A, 0

T(xo = §) =+ Tlx, — §1) o O

Txx(xo - g‘l) e Txx(xo - g‘l) —'12

T = &) - T — ) \ A, 1

(3.20)

Using Appendix A, a necessary and sufficient condition
for it to be impossible to solve these equations for any val-
ues of x,, §; * -+ {, is that there exists a vector A = ()|,

N2, A3, \4) independent of x such that,
MT(X) + MT,(x) + T () + MT,(x) =0 (3.21)
and
—Nl2 4+ Ny # 0. (3.22)

Equation (3.22) will be satisfied for all positive /? if and
only if (A\; = 0 and N\, = 0 can be ruled out because of
the conditions)

NN < 0. (3.23)

Our condition 2) means that F(x), and hence T'(x), can-
not depend on any scale length. The A’s are independent
of x and so to make (3.21) dimensionally correct [2] we
set

a b —d

)\1 = ;2‘, )\2 = ;, )\3 = C, )\4 = _0'— (324)
and rewrite it as
aT  bT

d
-+ =+ T, =-T, 25
ATy T3 (25

Condition (3.23) implies that d/c is positive.

Now T = d’F/dx* so F will also satisfy (3.25). Al-
though it is possible to add a term ¢ to F where d2¢/dx* =
0, according to condition 5) ¢ can only be the zero func-
tion.

Thus, we have shown that we can always construct a
counter example unless our filter F obeys to the equation

F b
v Ph e, =YF,
02 g g

(3.26)
with d/c positive. It is shown in Appendix B that the only
solution of this equation obeying conditions is the Gaus-
sian, thus proving theorem 1.

IV. THE 2-D CAsSE

We now consider the two-dimensional case when the
zero-crossing operator is the Laplacian V? and the image
depends on x = (x, y). Again, we consider the filtered
image

Fx*lx) = S_m S mF(x_ OHYyrede. @

We set
E(x) = V2 {F * I(x)}. 4.2)

The zero crossings are solutions of E(x) = 0 and form
surfaces in the three-dimensional (x, o) space. Our re-
quirements that zero crossings are not created at larger
scales is satisfied if the extrema of these zero crossing
surfaces are either maxima or saddle points. Minima are
forbidden. Thus, if we have a surface o(x, y) and there is
a point (x,, y,) with

ox(xo’ yo) = 0-y(-xm yo) =0 (43)
we cannot have o,, = 0 and both
0, > 0, ay, > 0. 4.4)
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The axes are chosen to be along the lines of curvature
at the extrema: thus, o,,, 0y, are eigenvalues of the Hes-
sian.

Let ¢ be a parameter of a curve of the surface E(x) =
0. Then,

dE _ OE d

dE OE dy | OE do
dt  ox dt

dy dt 9o dt’

Since we are on the zero crossing surface, we have
dE/dt = 0 and setting ¢+ = x and then ¢ = y, we obtain

4.5)

—E,

o, = E. 4.6)
_.Ev

o, = Ea'. 4.7

Suppose we are at an extremum (x,, y,). Choose the x
and y axes so that they coincide with the directions of prin-
cipal curvature at (x,, y,). Then we calculate

—Ex.x oYo

Talior Vo) = 22 (x(" ; )) @.8)
—_— E o

Oyor V) = ——-——E(f(x"yy )) . “.9)

It should be emphasized that (4.8) and (4.9) are true
only at an extremum of a(x, y) and only if the x and y axes
are taken along the directions of the lines of curvature (this
ensures g, = 0).

It follows, as in the 1-D case, that the conditions 3) and
4) will always be satisfied if E obeys the heat equation. If
0.(%5, ¥,) and a,,(x,, y,) are both positive, (4.8) and (4.9)
1mply that Ex.r(xoyo)/Ea(xoa yo) and E_vy(xoyo)/Eo(xos yo) and
0.(x,, ¥,) are both negative. Thus, a Gaussian filter will
always obey our condition.

We now show that if the filter is not a Gaussian, we can
conduct a counterexample. The argument is a generali-
zation of the proof of Theorem 1. Let

(%) = _§1 AS(L — &) 4.10)

set
T(x) = V'F(x). 4.11)

We can conduct a counterexample if we can solve the
matrix equation for any x,, {; - -+, {, and any positive

2 and I3
[(TC, — ) o TG, = &) ] 0]
T, = &) - T — &) | [ 4] 0
Ty, — &) - T, — &) | | 0
To, — 5 Talxo = S| | - | = | -0
Tot, — &) - Tolx, — S| | - 0
Tyx, — &) - Ty — &) A -3
T, = ) T = 6 | | 1] @1

19

Using Appendix A, a necessary and sufficient condition
for no solution to exist for all x,, ¢, - - -, {, is that we
can find = (\;, - - -, Ns) such that

MO+ NTx) + MT,K) + AT (x)
+ NMTo() + ATy + NTo(x) =0 (4.13)
and
—IN, — B\s + N\g # 0. (4.14)

Equation (4.14) can be satisfied for all positive /3 and
l% if and only if (because of the conditions)

Nhs > 0, N < 0. 4.15)
Again, condition 2) implies the A’s are of form
a b b
)\l=;’ )\2='O__l’ )‘3=_;2" )\4=Cl
—d
x = = -— N x =
T o TG (4.16)

and T satisfies
aT b b d
=+ ;‘ T, + ;2 T, + Ty + @y + 65Ty == T,

(4.17)

with ¢,c, > 0 and ¢,d > 0*. e can obtain restrictions on
¢; by requiring that the curvature at the extreme points is
negative. This means that elliptic operators—and hence a
skewed Gaussian filter—will also have the desired scaling
properties. We are not interested in these since we require
the filter to be symmetric (see Section II).

F will satisfy (4.17) up to a term ¢ with V*y = 0, but
because of condition 5), ¢ can be taken to be zero.

It is shown in Appendix B that the only solution of (4.17)
which obeys our conditions is the product of two 2-D
Gaussians. If we make the additional assumption of sym-
metry, we obtain a 2-D symmetric Gaussian. Hence, the
Gaussian is the only filter which satisfied our condition,
and we have proven theorem 2.

There is an additional property of Gaussian filters: al-
lowed zero-crossing surfaces in (x, y, o) space cannot have
saddle points with positive mean curvature H because H
= (0, + 0,,)/2. The result of this section forbids the ex-
istence of upside-down mountains or pits [in the (x, y, 0)
plane] and also of upside-down volcanos. Sections of the
zero-crossings surfaces normal to the (x, y) plane may ap-
pear as suggesting that lines of zero crossings are created.
In fact, because of saddle points of the surface, zeros can
be traced continuously along the zero-crossing surface to
smaller and smaller scales.

V. FURTHER RESULTS

It is clear that the methods of proof we have developed
do not only apply on zero crossings. For example, consider

‘W.
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the 1-D case and look for solutions of

d
— (F*xI)=0. 5.1
7 ¢ ) (.1
These correspond to maxima and minima of the filtered
signal which we call peaks and troughs. If we set £ =
(d/dx)(F * I) and duplicate the arguments of Section II,
we find that having a Gaussian filter is a necessary and
sufficient condition for peaks and troughs to not be cre-
ated.
More generally, if L(x) is a differential operator in any
dimension that commutes with the diffusion equation, then
solutions of

L(F = I) = const (5.2)

will not be created if and only if the filter is Gaussian.
Zeros of all linear differential operators can be encom-
passed by theorem 1.

In particular, in two dimensions, surfaces obeying
(dldx)(F * T) = O can only be created by a non-Gaussian
filter. Thus, ridges and ravines whose creation necessarily
involves creation of zeros along some direction, can only
be created, as the scale increases, by a non-Gaussian fil-
ter. The argument, however, does not apply to extremum
points (nondegenerate critical points, such as peaks and
pits, where all derivatives vanish simultaneously).

VI. DIRECTIONAL. OPERATOR

We have considered the 2-D case when our operator is
the second directional derivative along the direction of the
gradient in the filtered image. Let

H(x) = S SF(x -0 1) dE. (6.1)
The directional operator is
d__1 5 62
dt  |pH| 9x; Ox;
ax;

using the standard summation convention on the j indexes.
The second directional derviative along the gradient is
then

d’H _ HHH;
HH,

7= (6.3)

where H; = dH/dx;, H; = 3*H/ 0x;0x; and we use the sum-
mation convention over repeated indexes. We set
E(x) = H(x)H;(x)H; (). (6.4)

The zero crossings lie on the surface o(x, y) where
E(x) = 0. Our condition is that if we have a point (x,, y,)
where

0(Xos Yo) = 05X, Yo) = 0 (6.5)

and the x and y axes are along the direction of the lines of
curvature of the o(x, y) surface at that point (so that
o,, = 0), then it is impossible for both ¢,, and o,, to be

positive, i.e.,

0 (x,, v,) > 0, 0y (X0, ¥,) > 0. (6.6)
We use the implicit function theorem to obtain
% 6.7
o, = .
x E, )
—E,
o, = Ea’ (6.8)
and we calculate, at places where (6.5) holds,
—Eo(x,, ¥0)
0u(Xpy Vo) = ———— (6.9
o E (x5, ¥) )
_ _Eyy(xaa yo)
o-yy(xw yo) - Eo(xo9 yo) . (610)

Again, note that if E obeys the diffusion equation, then
the conditions (6.5) and (6.6) cannot be satisfied. How-
ever, E is no longer a linear function of the filter, and so
we cannot directly obtain a condition the filter must sat-
isfy. Now set

I(x) = 2} AbSx — &) 6.11)

We find
HiHHy; = A, AgA,Fi(c) F;(B) Fy(v)

where the summation convention applies to «, 3, v as well
as to i, j. We define

(6.12)

T(aBy) = § {F(F(BF;(v) + Fi(B)Fj()Fy(y)
+ Fi()F;(MF;(B) + Fi(BF;(v)F;(a)

+ Fi(MFj()F;(B) + Fi(v)F;(B)F;(e)} (6.13)
and write (6.12) as
HHH; = T(aBy) A, AA,. (6.14)

We can produce a counterexample if we can satisfy

—T(aB'y) ] i 0 _\
Taey) -+ | [Autsn,] 0
T(aBy) * - : 0
To(afBy) - - . = |-n (6.15)
To(aBy) - - - : 0
TyaBy) -+ | L | -0
LTs(OlﬁY) T Ll _

It follows from Appendix A that no solution exists if
there is A = (A;, Ay, A3, A, Ns, N6, A7) such that

1T(aBy) + MT(aBy) + MT(aBy) + NT(aBy)

+ )\7Txy(aB'Y) )\STyy(aB'Y) + )\6Ta(a67) = 0 (616)
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but

—z%% — I3\s + N\ # 0. 6.17)

As in Section III, we can use dimensional arguments to
show this means that T(aB7) satisfies the generalized dif-
fusion equation. As in Appendix B, we set \; = 0 to pre-
serve symmetry.

However, since we require solutions to (6.15) of specific
form A,AzA,, it is possible that there are no solutions of
(6.15) even if T(afBvy) does not obey the generalized dif-
fusion equation. To rule this out, we must show that it is
possible to find a solution of form 4, AgA.. From Appen-

dix B it is possible to get a solution B, of
_ — L [ 0 B
T(aﬁ’Y) B(xﬁ'y
0
0
= 5 (6.18)
_l |
—l%
| TolaBy) | L - )
L

if and only if the vector

— 0 .
0

0
_1%
_1%

.

lies in the spaced spanned by the

[ T(aBy)

T, (o)

as «, 8, v vary. Denote

by /' and

TOtB’Y

L_Ta(aﬁ')’)_j

by T,g, where i = 1-6.

Each T'(af3y) is symmetric in all indexes «, 8 and 7,
and so there are N = n(n + 1) (n + 2)/6 such vectors.
They have only six components each and so they are not
linearly independent. There will be at least N-6 linearly

independent vectors {, such that

% T8 =0, p=1wN=6.(6.19
afy

If T(,g,) does not obey the generalized diffusion equa-
tion, there will be at least one solution B, to (6.18). The
general solution is of the form

N—6
Bus, + E}l 1pihs (6.20)
where u is arbitrary. We now ask under what conditions
can we find 4, and p which satisfy
N—6
B, + ,En Bothgy = AgAgA,. 6.21)

From the form of (6.15) it is clear that scaling the A4’s
will not affect the counterexample. Hence, satisfying
(6.21) is equivalent to finding an A, such that A, AgA, lies
in the N-5-dimensional vector space spanned by B,
fLBT, s, (Z,;f. A necessary and sufficient condition is
that A, Ag A, is perpendicular to the five vectors which span
the complement of this N-dimensional space in the full N-
dimensional space.

Let the five vectors be P4, Qugy» Top,» and Y5, It will
be possible to solve (6.21)‘and hence (6.15) if we can sat-
isfy

Py AuuAgA, = 0
QupyAaAgA, =0
TopyAaAsdy, = 0
XopyAaAgA, = 0

Yupy AaAgA, = 0. (6.22)

This is a system of five simultaneous cubic equations in n
variables. If we take n sufficiently large, it will always be
possible to solve them (see [17]).

Thus, unless T(aB7y) obeys the generalized diffusion
equation, it will always be possible to construct a coun-
terexample.

We now show that no reasonable filter will satisfy these
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requirements. First, suppose we have a Gaussian filter

G(x, 0)

1
G(x, o) = — exp {202} (6.23)
where m is an arbitrary number. Then we find
- — ga i - - ga :
Gi(a) = (Z,,,“ ) exp{ (x202 )} 6.24)
—'61" _ ga i
Gy(@) = 55 exp i—(i#}
— ali — ga j (x - ca)z
bt ]
(6.25)
So we obtain
T(aBy) =
_ﬁ—cy_u—cﬁ_u—gq
2 exp { 207 20 27
1
X s z—(x = &) (x— Ly
—x-Lp-x-&)-x—-8) - &x-8y
+ (x Ca)oz(ft gﬁ) . (x _ ;7)
C Qf(x L) w1,
-ty -8
* 2 ¢ gv)}' (6.26)

As shown in Appendix B, the general diffusion equation
can be written

b, d
by T, + — T + Ty + T, =-T, (627
g Iy
If we substitute (6.26) into (6.27) we see that clTxxv+ o, Ty,
contains a term
_ L latoy x = L)
Z= =25 03m+6 exp { 202
@ -89 -
- - . 6.28
27 27 ©29

-

All other terms in (6.27) will be of this form multiplied
by powers of (x — ¢.), (x — p), and (x — &,). From
(6.17), ¢, and ¢, have the same sign and so it is impossible
for Z to be zero and, hence, (6.27) cannot be satisfied if
the filter is a Gaussian.

‘Now suppose we have a filter which satisfies this re-
quirement. Set {, = {, + {z and integrate T(aBy) with
respect to ¢, and {5. We find

S SFi(x = L) Fi(x — &Lp)
Fix + (&, + L) d Ld L
= F; * F; * F;(3x).
hence, with £, = {, + {5, we have

(6.29)

S S T(afy)d §,d §g = F; * F; * F;(3x).  (6.30)

This will satisfy the generalized diffusion equation since
T (By) obeys this equation for all values of {,, £, and &,
From Appendix B, the solution to the generalized diffu-
sion equation is P * f(x) where f is an arbitrary function
and

1 x + b,o) d
Px, 0) = = exp{ }
0'2 202 Cy (6.31)
-ex {(y + b20') d
p 202 Cz
We have
F; * F; * F;(3x) = P * f(x). (6.32)

The condition 4) means that b, = b, = 0 and we can
scale the x and y axes to make P a Gaussian. Thus,

F, * F; % F;(3x) = G * f(x). (6.33)

We Fourier transform this equation and denote the Fou-
rier transform of a function g(x) by 7g(w).

Fi (@) 1F)(w) 7Fj(w) = 7G(w) 7f(3 w). (6.34)
But we have
TF(w) = —iwsF(w) (6.35)
and
9 2
7GBw) = expg 75 } (6.36)
Hence,
4 3 — 9’
o' {7F(w)}’ = exp 57 713 w) (6.37)
and
73 w) 1 —3w?
F(w) = { 7 } exp{ 75 z (6.38)

Thus, F is the convolution of a function with a Gaussian
and obeys the diffusion equation. But, as shown in Appen-
dix B, the only such filter which satisfies the conditions is
a Gaussian.

So a filter which obeys the conditions (6.16) and (6.17)
must be a Gaussian, and yet a Gaussian cannot satisfy
these conditions. Therefore, for this directional operator,
it is impossible to satisfy our requirement. Notice that if
the gradient direction does not change rapidly, the second
directional derivative along the gradient can be approxi-
mated by the second derivative along the x axis where the
x axis is chosen in the direction of the gradient. The ar-
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guments of Section V then show that no zero crossings are
created if, and only if, the filter is Gaussian. If these as-
sumptions are satisfied at one scale, they may break down
at larger scales because of the influence of other parts of
the image. We therefore expect that, at large scales, zero
crossings may be created even for Gaussian filters, unless
the image is very simple (for instance an isolated, straight
step edge).

VII. CONCLUSIONS

The behavior of the zero (or level) crossings is more
complex in two dimensions than in one dimension. In the
2-D case, two zero-crossing contours can merge into one
closed contour as the scale increases. The zero-crossing
surface has a 2-D cross section (for given y, say) that cor-
responds to an allowed 2-D case. In 2-D, however, the
“complementary” situation can also occur: a closed zero-
crossing contour can split into two as the scale increases,
just as the trunk of a tree may split into two branches.
This occurs at saddle points of the zero-crossing surface.
This case would correspond in 1-D to the “creation” of a
zero crossing (imagine a 1-D section of the zero crossing
surface) which is forbidden. In 2-D, however, no new zero
crossing is created, since the corresponding surface is
continuous down to zero scale. We have constructed 2-D
examples of both these two cases, using the Gaussian fil-
ters. Both examples would also work for all other filters.

Several other functions have been proposed for the fil-
tering images. We expect that they only give a nice scaling
behavior for values of o for which they approximate the
solution of the diffusion equation. The DOG (difference of
Gaussians) does not satisfy the diffusion equation, but is
a good approximation except when o is very small. One-
dimensional real Gabor functions (the product of a Gaus-
sian and a sine or a cosine) approximate the solution of the
diffusion equation only for large values of ¢. Our condi-
tions are violated even more by the sine function which
only satisfies the diffusion equation at best in a weak
asymptotic sense. Fig. 3 shows an example of the zero
crossings generated by the Gaussian and the sine filter.

It is interesting that our proof implies that the heat equa-
tion is the only linear equation that has a nice scaling be-
havior of its solutions, with suitable boundary conditions.

In summary, we have shown here that the Gaussian is
the only filter that guarantees a nice scaling behavior of
the zero and level crossings of linear differential opera-
tors. (Notice that the Gaussian need not be symmetric:
Elongated directional filters, obtained by stretching the
axes, also have a nice scaling behavior.) Surprisingly, zero
and level crossings of most signals filtered with a Gaussian
filter at different scales uniquely characterize the signal
[18] up to overall scaling in one and more dimensions, for
most functions that can be approximated arbitrarily well
by polynomials. In 1-D Logan [7] proved a similar result
for bandpass signals of the sequential type. The result can-
not be extended to two-dimensional signals. Very re-
cently, Curtis [19] has shown that in two (but not one)
dimensions, the result holds even for bandlimited func-
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Fig. 3. Examples of the zero crossings of the second derivative of the (a)
Gaussian and (b) sine filter for the same input function.

tions. Both Logan’s and Curtis’ results do not need Gauss-
ian filtering and multiple scales, but assure certain types
of smooth signals. Thus, Gaussian filtering across scale
originates a “‘nice” and complete representation in terms
of zero crossings.

APPENDIX A
If we have a matrix equation

Bx =a

ey

the necessary and sufficient condition for the existence of
a solution is that

by, by,
rank |
L bynn
by by, a,
= rank 2)
\ b Bun  am

Hence, a necessary and sufficient condition for the non-
existence of a solution is that we can find a vector

= (A, " * , Ay, such that
Nbyy, == b)) + -0 N,
“GOmis " b)) =0 A3)
but for which
Nay + 0+ Na, # 0. @)
APPENDIX B

Suppose we have a generalized diffusion equation of the
form

F

a + bF, +oF dF,
cF, = .
o o “ o

0]
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We can remove the first term by scaling F = o~ ““F.
Consider the remaining terms

bF dF,

— 4+ cF,, = ?)
a
We write
F(x, 0) = ﬁ S flw, 0) e dw 3)

where f(w, o) is the Fourier transform of F(x, o) with
respect to x. Combining (3) and (2) we obtain
b(—i da
( lw)f+ (=D = __f'

o o do

@

We integrate and get
f(w, (7) - g(w) {e—iwba/d e(—cwzld)(UZ/Z)} (5)

where g(w) is a function of integration independent of o.
Hence, substituting (5) into (3) gives us

F(x, 0) = L S g(w) {eiebod g~eRID@DY piex oy

V2r
©

Note that we are considering equations for which c/d is
positive and so the integral is well defined. We now apply
the convolution theorem to (6) and get

1
F(x, 0) = W S Ax = £, 0) p(§) d O]

where u({) is the Fourier transform of g(w) and N(x, 0) is
the Fourier transform of {e ™" ¢~***/24} We calculate

)\(x, O') — \/%%e(-dﬂwz)(x+ba)2. (8)

Thus, the general solution to (1)is of the form

1 ld .
F(x, 0) = I g@h ! \E S e~ bR (6 dE

™

®

We now impose the conditions stated in Section I. First,
note that \(x, ¢) is a Gaussian with center x = —ba. The
requirement that the center of the filter does not move im-
plies that b = 0.

Write

P, o) = o | \FE% DI ) d - (10)
s

and consider the limit as o tends to 0. Now,

.1 S 0 A
lim —— | |22 pdnde-02 _ 5o —
lim —= \[we x =9

where 6 denotes the Dirac delta function. If (a/d) is non-

(1

zero, the limits of F(x, o) will either be undefined or zero.
Hence, our condition 3) forces a = 0. Moreover, substi-
tuting into (10) we obtain

lim F(x, o) = u(x)

a0

(12)

and condition 3) means that u(x) must be the delta func-
tion. Hence, on substituting this back into (10), the only
solution of (1) which satisfies our condition is the Gaussian

G(x 0) = _1__ 4_]_ e(—d/2c)(x2/az)

2r\Nco

This analysis can be extended to the 2-D generalized
diffusion equation

F  bF, bF
A < Y
(72 g g

13)

d
+ oF,, + oF,, = p Fo. (14)

A similar argument shows that the only solution obeying
the condition in a 2-D space is, with ¢; = 0 because of
the symmetry requirements of Section I

G(x y 0) = _1_ i i _1_ e(-—d/2c‘|)(x2/02) e(~d/201)()llaz)
o V2r NaNa e

15)
We again use the symmetry requirement of Section I to
set ¢; = ¢,. Then we obtain

1 e(-d/2c)[(x2 +y2/a?)]

1d
G(x, y, 0) = m e (16)

We can scale the o axis by vc/d and write (13) and (16)
as

1

[an—y

—x22q2

G(x, 0) = e a7
™
and
11 —(x2 +y2)/202
G(x, y, 0) = rm € , (18)

respectively. This ensures that ¢ is the standard deviation
of the function.
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