International Journal of Computer Vision, 8:2, 99-111 (1992)

© 1992 Kluwer Academic Publishers, Manufactured in The Netherlands.

Feature Extraction from Faces Using Deformable Templates

ALAN L. YUILLE, PETER W. HALLINAN, AND DAVID S. COHEN
Division of Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138

Received February 11, 1992,

Abstract

We propose a method for detecting and describing features of faces using deformable templates. The feature of
interest, an eye for example; is described by a parameterized template. An energy function is defined which links
edges, peaks, and valleys in the image intensity to corresponding properties of the template. The template then
interacts dynamically with the image by altering its parameter values to minimize the energy function, thereby
deforming itself to find the best fit. The final parameter values can be used as descriptors for the feature. We
illustrate this method by showing deformable templates detecting eyes and mouths in real images. We demonstrate

their ability for tracking features.

1 Introduction

The ability to detect and describe salient features is an
important component of a face recognition system. Such
features include the eyes, nose, mouth, and eyebrows.
This task is hard despite pioneering work by Kanade
(1977) and much research on edge detection and im-
age segmentation. Current edge detectors, for exam-
ple, seem unable to reliably find features such as the
boundary of the eye. The problem seems to be that the
edges of the eye rarely correspond to the idealized step
edges in intensity assumed by most edge detectors.
Moreover, even when local evidence for edges is
available it is hard to organize this local information
into a sensible global percept.

We propose a new method to detect such features
by using deformable templates. These templates are
specified by a set of parameters which enables a priori
knowledge about the expected shape of the features to
guide the detection process. The templates are flexible
enough to be able to change their size, and other
parameter values, so as to match themselves to the data.
The final values of these parameters can be used to
describe the features. The method should work despite
variations in scale, tilt, and rotation of head, and
lighting conditions. Variations of the parameters should
allow the template to fit any normal instance of the
feature.

The deformable templates interact with the image
in a dynamic manner. An energy function is defined
which contains terms attracting the template to salient
features, such as peaks and valleys in the image inten-
sity, edges (edges alone seem insufficient), and the
intensity itself. The minimum of the energy function
corresponds to the best fit with the image. The parame-
ters of the template are then updated by steepest de-
scent. This corresponds to following a path in parameter
space, and contrasts with traditional methods of tem-
plate matching which would involve sampling the par-
ameter space to find the best match (and would be very
expensive computationally). Changing these parameters
corresponds to altering the position, orientation, size,
and other properties of the template. The initial values
of the parameters, which may be very different from
the final values, are determined by preprocessing.

These deformable templates have some similarities
to elastic deformable models (Burr 1981a, 1981b; Dur-
bin and Willshaw 1987; Durbin, Szeliski, and Yuille
1988) and to snakes (Kass, Witkin, and Terzopolous
1987). These elastic models, however, do not contain
the domain-specific structure we assume. Our work
also is related to methods (Pentland 1987; Ayache et
al. 1989) of representing geometric structures in terms
of parameterized models and fitting them to depth data.

Our work was originally reported by Yuille, Cohen,
and Hallinan (1989). More recently, deformable
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templates have been applied to facial features by Ben-
nett and Craw (1991) and Shackleton and Welsh (1991).
We have also applied similar techniques to medical im-
ages (Lipson et al. 1990). Since then we have become
aware of other work on deformable templates, most
notably the work of Grenander and his collaborators
(Grenander, Chow, and Keenan 1991).

2 Preprocessing

The deformable templates act on three representations
of the image, as well as on the image itself. These
representations are chosen to extract properties of the
image, such as peaks and valleys in the image inten-
sity and places where the image intensity changes
quickly. An additional representation could be added
to describe textural properties. An advantage of using
these representations is that the templates need only
be specified in simple terms. For example we do not
need to specify the intensity values on the iris, merely
that the iris is a valley in the image intensity. Another
advantage of using these representations is that they
enable long-range interactions to occur.

These representations do not have to be very precise,
and they can be calculated fairly simply. We have tried
several methods to extract these features, including
morphological filters (Maragos 1987; Serra 1982) and
robust deformable templates for valleys and peaks
(Hallinan 1991). The advantage of these methods for
extracting the edge, valley, and peak fields is that they
yield measures of the strengths of the features in ques-
tion. This gives us three fields ¥,(x, y), ¥,(x, ¥) and
V,(x, y) representing the (positive) strengths of the
edge, valley, and peak fields. For example, the edge
field will be largest near edges in the image. We then
smooth the fields by convolving them with an exponen-
tial function exp{—p(x* + y*)"?}. The smoothing
enables the interactions to be effective over longer
distances. This gives us three fields ®,(x, y), ®,(x, y)
and ®,(x, y) where (using * to denote convolution)

d,(x, y) = e P % ¥ (x, y)
o,(x, y) = e P w ¥ (x, )
B0, y) = e A et 9y (D)

There is an additional field ®;(x, y) corresponding to
the image intensity /(x, y) itself. Examples of these
fields extracted using morphological operations can be
seen in figures 2, 7, and 10.

Introducing these potential fields will enable (by the
interactions specified in section 3.1) strong edges,
valleys, or peaks to attract objects a large distance away.
This is an advantage of working on representations of
the image rather than on the image itself. A final refine-
ment stage acting directly on the image may perform
the final alignment.

3 The Eye Template

After some experimentation and informal psychophysics
on the salience of different features of eyes we decided
that the template should consist of the following
features:

1. A circle of radius r, centered on a point X,. This
corresponds to the boundary between the iris and
the whites of the eye and is attracted to edges in the
image intensity. The interior of the circle is attracted
to valleys, or low values, in the image intensity.

2. A bounding contour of the eye attracted to edges.
This contour is modeled by two parabolic sections
representing the upper and lower parts of the boun-
dary. It has a center ¥, width 2b, maximum height
a of the boundary above the center, maximum height
¢ of the boundary below the center, and an angle
of orientation 6.

3. Two points, corresponding to the centers of the
whites of the eyes, which are attracted to peaks in
the image intensity. These points are labeled by &,
+ py(cos 6, sin 6) and X, + p,(cos 6, sin f), where
p1 = 0and p, < 0. The point %, lies at the center
of the eye and @ corresponds to the orientation of
the eye.

4. The regions between the bounding contour and the
iris also correspond to the whites of the eyes. They
will be attracted to large values in the image inten-
sity. These components are linked together by three
types of forces: (i) forces which encourage ¥ and
X, to be close together, (ii) forces which make the
width 2b of the eye roughly four times the radius
r of the iris, and (iii) forces which encourage the
centers of the whites of the eyes to be roughly mid-
way from the center of the eye to the boundary.

The template is illustrated in figure 1. It has a total
of eleven parameters represented by & = (¥, %, p,
P2, I, a, b, ¢, 0). All of these are allowed to vary dur-
ing the matching.
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The First Eye Template
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Fig. 1. A deformable template for an “archetypal” human eye, figure
2. It is parameterized by a, b, ¢, x,, y,, x., ¥.. 1, 0, p;, and p,. R,
and Ry, are intensity regions containing the whites and dark center
of the eye respectively. R,, is bounded by parabolic curves dR,,
specified by parameters a, b, and ¢. R, is bounded by a circle dR,,
of radius r.

To give the explicit representation for the boundary
we first define two unit vectors

& = (cos 0, sin §) and & = (—sin @, cos 6) (2)

which change as the orientation of the eye changes. A
point X"in space can be represented by (x;, x,) where
X' = xi€] + x,&. Using these coordinates the top half
of the boundary can be represented by a section of a
parabola with x; € [—b, b]
L o2

X =a- p2 3)
Note that the maximal height, x,, of the parabola is
a and the height is zero at x; = +b. Similarly the
lower half of the boundary is given by

i

R )

Xy = —¢ +
where x; € [—b, b].

3.1 The Energy Function for the Eye Template

We now define a potential energy function for the im-
age which will be minimized as a function of the
parameters of the template. This energy function not
only ensures that the algorithm will converge, by act-
ing as a Lyapunov function, but also gives a measure
of the goodness of fit of the template.

The complete energy function E(g") is given as a
combination of terms due to valley, edge, peak, image,
and internal potentials. More precisely,

E.=E +E +E+E +Eypny (5

where: (i) The valley potentials are given by the integral
over the interior of the circle divided by the area of the
circle,

8]

E, = -
IR|

f a,(7)dA 6)
R('

(ii) The edge potentials are given by the integrals
over the boundaries of the circle divided by its length
and over the parabolae divided by their lengths,

2

E=—-_2%_
|0R,,| ¥ oR,,

$,(¥)ds — 3 f 3,(®)ds (7)
|0R, | / 3R,
(iii) The image potentials have contributions that at-
tempt to minimize the total brightness inside the circle
divided by its area,

Cy

"R VR,

®;(X) dA (8)

and maximize it between the circle and the parabolae
(again divided by the area),

E=_51{ &@)da 9
L fﬁw /(%) ©)

(iv) The peak potentials, evaluated at the two peak
points, are given by
E, = c{®(X, + p,&) + (T, + p,&))} (10)

(v) The prior potentials are given by

Kl oo _ k
Eprior = 5I ”xe ¥ xc||2 + ;(Pl TREPE T {}‘ + b})z

+ %(b - 2r)? + ’_‘Zi(b - 2a)* + (a - 2¢)%)

oy

Here Ry, R, 0R;, and dR,, correspond to the iris, the
whites of the eye, and their boundaries (see figure 1).
Their areas, or lengths, are given by |R,|, |R,|, |dR,,|,
and |0R,|. A and s correspond to area and arc-length
respectively.

4 The Algorithm and Simulation Results for Eyes

The algorithm uses a search strategy, based on steepest
descent, that attempts to find the most salient parts of
the eye in order. It first uses the valley potential to find
the iris, then the peaks to orient the template, and so on.
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To implement this strategy we divide the search in-
to a number of epochs with different values of the
parameters {c;} and {k;}. The updating in each epoch
is done by steepest descent in the total energy E = E,
+ E, + E, + E; + E,;,. The energy terms are writ-
ten as explicit functions of the parameter values. For
example, the sum over the boundary can be expressed
as an integral function of X, a, b, ¢, and 6 by

1

d,(¥) ds
|loR,| Jor, °
C3 Lol T Ak, a _,.
=¥ T D%, + x,8) + {a — —2}&) ds
a5 f_r,=—b ( 18 + { 7 1}&2)

i
ekl f” "8, + 118 - {c — 522 ds

L(as b)' J’.];_b bz
(12)

where s corresponds to the arc length of the curves and
L(a, b) and L(c, b) to their total length.

The parameter values are updated by steepest de-
scent, that is,

dr L 08
dt ar

It is assumed that preprocessing, or interactions be-
tween different templates, will allow the eye-template
to start relatively near the correct position. See sec-
tion 7 for a discussion of this.

This theory was tested on real images using a SUN4
computer. The valleys, peaks, and edges are first ex-
tracted and smoothed. On a typical eye, this gives rise
to the potential fields shown in figure 2. The eye
template is then given initial parameter values, posi-
tioned in the image and allowed to deform itself using
the update equations.

Some initial experimentation was needed to find
good values for the coefficients and a number of prob-
lems arose. For example, the intensity and valley terms
over the circle attempt to find the maximum value of the
potential terms averaged inside the circle. This led to
the circle shrinking to a point at the darkest part of the
iris. This effect could be countered by strengthening the
edge terms, which pull the circle out to the edge be-
tween the iris and the whites of the eye. Another prob-
lem arose because the iris might also be partially hidden
by the boundary of the eye, thus the part of the circle
outside the boundary cannot be allowed to interact with
the image. This can be dealt with by only considering
the area of the circle inside the bounding parabolas.

Fig. 2. The potential fields for an “archetypal” eye. The eye, top
left, has edge, valley, and peak fields shown top right, bottom left,
and bottom right. The strengths of the fields are shown in greytone,
white is strong and black is weak.

The system worked well after good values were
found for the coefficients. The templates usually con-
verged to the eye provided they were started at or below
it. The valleys from the eyebrows caused problems if
the template was started above the eye.

The values of the coefficients changed automatic-
ally during the course of the program to define eight
distinct epochs: Details of the implementation can be
found in tables 1, 2, and 3, but note that the parameter
values given there are not the only ones possible.

1. Only the valley forces are allowed to act on the
template and the center of the eye x, is set equal
to the center of the iris x, so that the iris drags
the eye-template toward the eye.

2 .-3. The coefficients of the intensity and edge forces
for the circle are increased. This helps scale the
circle to the correct size of the iris. After this
stage the position and size of the iris are con-
sidered essentially fixed and their derivatives are
weighted by a small constant (see table 2) that
destroys the symmetry in the E,;,, ensuring
that the parameter values of the iris can influence
the parameter values of the remainder of the
template, but not vice-versa.

4. The template interacts with just the peak field,
so that is parabolic boundaries rotate and translate
to the right location.
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Table 1. Change of energy coefficients with time. findicates epochs using all points within R;,. Other weighting schedules are possible.

Epoch cy s c3 4 5 g k ks ks ks
1 100 0 0 0 0 0 0 0 0 0
21 100 100 0 0 400 0 0 0 0 0
3t 200 250 0 0 300 0 0 0 0 0
4 0 0 0 0 0 200 0 0 0 0
5 0 0 50 200 0 100 1 5 5 0.01
6 200 400 160 400 150 100 1 5 5 0.01
7 200 500 200 400 125 100 1 5 5 0.01
8 200 250 100 400 63 100 1 5 5 0.01

Table 2. How parameters are updated: Each table entry has the form K, pprp where K is a constant (usually 0 or 1) and p is a parameter.

During each descent step of epoch e, each parameter p is updated according to ( py.,, — Poig) = —(60)K, aEfapgp Other update schedules
are possible.

Epoch X, Yo a b c f X, Ve r )2 P2
1 X, Ye 0 0 0 0 X, Ve 0 0 0

2-3 4x, 4y, r r r 0 4x, 4y, r —r
4 X, ¥, 0 0 0 0016 0 0 0 22 Pa
5 X, Ve 0 b 0 .01e 0 0 0 P P
6-8 X, Ve a b c 0 0lx, 0ly, .01r P P

Table 3. Tolerances e(e, p) determining convergence with respect to parameter p during epoch e, Convergence occurs when 4, = |poa —
Poew| < €le, p) ¥ p for M consecutive descent steps. df is set at each step so that max over p of A, = Ay, A blank space mdlca[es the
parameter is not tested.

Epoch Xg Ve a b c [} X, Ye r )2 P Ay M
1 1.5 1.5 .20 100
2 1.5 1.5 3 10 100
3 5 .5 3 .10 50
4 2 3 3 .10 100
5 .1 2 2 10 100
6-7 2 2 2 .10 100
8 2 2 2 2 2 2 2 2 2 2 2 .02 100

5. The position of the white boundaries are fine
tuned by adding interactions between the edge
and intensity fields.

6.-8. The position of the template are fine tuned by
allowing all fields to interact and by allowing all
parameters to change.

The program changes epoch automatically when it
has reached a steady state of the energy function with
the appropriate coefficient values (i.e., when it thinks
it has accomplished its goals for that epoch). See table
3 for details.

Figure 3 illustrates the program running in the dif-

ferent epochs. Note that the template can start some
distance away from the eye, can scale the iris, rotate
the eye and lock onto the edges. Figure 4 shows the
final state of the system on several different eyes. The
runtime for the program is between five and ten minutes
on a SUN4.

Fig. 3. Eye template at different times during the minimization. A
dynamic sequence for the eye left to right and top to bottom. The
first frame shows the initial configuration and the remaining frames
show the results at the ends of the epochs (the final frame combines
the results of the fifth and sixth epoch). Note how the valley force
pulls the template in, the intensity helps to scale the circle correctly,
the peaks orient it and the edges and the intensity fine tunes it.
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Fig. 4. Final results of the eye templates. The right column shows
the final state of the template acting on the eyes in the left column.
Note that a small error occurs in the alignment of the bottom template.
This is due to a strong intensity peak on the eyelid and some shadow
in the eye.

5 The Mouth Template

The appearance of the mouth varies considerably
depending on whether it is open or closed (i.e., on
whether the teeth are visible or not). We define a
mouth-closed template and a mouth-open template,
although, as we will demonstrate later, the mouth-open
template is also capable of detecting closed mouths.
For a closed mouth the most salient feature is a deep
valley in the image intensity where the lips meet. There
will also be edges at the top and bottom of the lips
although the latter edge is often very weak. This
motivates the mouth-closed template of figure 5.
We define the mouth-closed template in terms of a
coordinate system (x, y) centered on a point '(the center
of the mouth) and inclined at an angle  (the orienta-
tion of the mouth). The positive y direction points
downward for consistency with the coordinate system
used on the computer screen. The template is defined
as follows: (1) The edge at the top of the upper lip is
represented by two parabolas P, which intersect above
the center of the mouth. These are given by the lines

4

b b,

Fig. 5. The mouth-closed template. The mouth is centered on a point
X, and has an orientation f. The left and right boundaries are at
distances &, and b, from £,. The intersection of the upper two
parabolas occur directly above £, at a height of k. The lower two
parabolas have maximum distances from the central line (shown
dotted) of @ and a + c.

Vax) = }:ub_l 2+ wx + (@ — h
b}
Yoy = JB T8 wba |2 G

b3

13)

The coefficients u; and u, help characterize the upper
two curves but have no simple geometric interpreta-
tion. The coefficients a, by, h, b,, c¢ are defined in
figure 5.

(2) The edge at the bottom of the lower lip is
represented by a parabola P,

4 by —b 7

—@+ol1-__*
yx) =(a+c) RS x 5

(14)

(3) The valley at the intersection of the lips is repre-
sented by a parabola P,
o 2
»Wx) = a Biigies ke o Lpievie, 5 by
by + b’ 2

(15)
The template depends on 10 parameters & = (a, b,
by, uy, uy, h, c, X, 0) and its potential energy function
Ey_(8) is given by
EM—C = Ev + Ee =+ Eu + Eb + th + Ep (16)

where the valley potential, calculated along the valley
parabola y,(x), is
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v

=_ c'f (%) ds a7
|P,| 7,

the edge potential, calculated along the upper lip

parabolae y,(x) and y,(x) and the lower-lip parabola

y3(x), is

= T €3
=_= (X)) ds — = @) s, (IB)
| ulfPu ‘ |P| ff’: e
and the internal potentials are

E, = E (u + -"42)2
2
k

E, = 72 b, - 52)2

B = 52 (c = Wy

ky Jiv by
E - . 1
N od [b1+bJ @)

The internal potentials attempt to make the top two
parabolas similar (the E, term), place the center of the
mouth midway between the corners (E, term), make
the width of the lower lip roughly X\ times that of the
upper lip (E,, term) and encourage the top lip to bend
down at the center (the E, term, this helps prevent the
upper lip getting pulled up to the nose).

Typical values for the constants are ¢; = 1000,

= 100,c3 = 15, A = 2.0, k; = 0.1, k, =
k3 = 0.1, k4 = 1000.0. The update is again done by
steepest descent.

An additional expansion force attempts to make the
mouth as wide as possible based on the average strength
of the valley force on the center parabola. This gives
additional update energy terms to b, and b, of

1
k— [ &) ds 20
vy va ®) (20)

For an open mouth, the most salient features are the
teeth and the two intensity valleys separating them from
the upper and lower lips. It is tempting to describe the
teeth as intensity peaks. However, although the teeth
are strongly salient to human observers, they are often
less bright than the specularities on the lips. There is,
however, a strong edge field corresponding to the edges
between the teeth. We therefore define a region cor-
responding to the teeth which is attracted to both peaks
and edges. See figure 6.

Fig. 6 The mouth-open template. The mouth is centered on a point
X, and has an orientation of §. The left and right boundaries are at
distances b, and b, from £,. The intersection of the upper two
parabolas occurs directly above £, at a height of @, — h,. The cen-
tral two parabolas have maximum distances from the central line
(shown dotted) of g, and a;,. The bottom parabola has maximum
distance hy, + a,.

The mouth-open template can be obtained by hav-
ing two valley parabolas instead of one. The region be-
tween them corresponds to the teeth. The parabolas for
the top of the upper lip (P, and P,), bottom of the up-
per lip (P5), top of the lower lip (P,), and bottom of
the lower lip (Ps) are given by equations (21), (22),
(23), (24), and (25), respectively (as before we use a
coordinate system centered on ¥, oriented by an angle
6 and with the positive y axis pointing downward)

ypoy = 4= Limiine L ”Ib‘ 2+up+@-h) @D
Yp,(x) = X +upx+(a,—h) (22)
T 23
o) = a1 = b2)2 } (23)
sEwEa 1—__4 24)
s I e
yp(x) = (ap + hy)< 1 — m
2
Mo - by (25)
2

The region between the upper and lower lips has area
(2/3)(by + by)(ap — a,). The template depends on 11
parameters & = (a,, a,, by, by, uy, uy, hy, hy, &, ) and
its potential energy function Ey_o(Z) is given by
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EM—O:EV+EQ+Ef+Eu+Eb+Eh+Ep+Ea
(26)

where the valley potential, calculated along yp (x) and
yp(x), is

E, = SAX) = C2 ® () d
v | 3] f ( ds i f ( ) §

the edge potential, calculated along yp (x), yp,(x), and
yp(x), is

oA T B ke B
|P1!fP1 e |Pz|ff’2 ik
®,(¥) ds  (28)

oyl

the teeth potential, which attempts to maximize the
average intensity and strength of edges in the teeth
region R, between the upper and lower lips yp,(x) and

yp(x), is

E = ,(¥) + AP, (X)} dA 29
= Rl ) @9)

and the internal potentials are

k

E, = 7] W + )
k

E, = 72 by — by

k
= 73 (hy — M:}z

E, = ky
P 7 b ¥ b,
E, = ks lay — a] (30)

The first four internal potentials are the same as for
the mouth-open template (allowing for changes in nota-
tion). The new potential E, ensures that the mouth is
clamped shut in the absence of teeth. Note that this
degenerates to the mouth-closed template when g, =
a,. The constant \ is usually set to be 1.0.

The dynamics follow by steepest descent in
parameter space as before.

An additional force F, is defined to help open the
mouth. It is based on the total strength of the peak and
edge forces in the entire teeth region. This gives addi-
tional energy update terms for a, and a,, of

ks T f {@,(F) + \&,(F)} dA (31)

IR,

and

1
e T le {®,(T) + M, (¥)} dA (32)

respectively.

6 Simulation Results for Mouths

Again the potential fields of the valleys, peaks and edges
are computed before the program starts. Figure 7 shows
the typical form of these fields.

The system worked well for both the mouth-closed
and mouth-open templates after some preliminary ex-
perimentation to fix the values for the coefficients.

For the mouth-closed template there were two
epochs: (i) Coefficients are high for the valley forces
and zero for the edge forces. The valley term pulls the
template to the mouth, scales and orients it. The ex-
pansion force also helps to scale it. (ii) The edge coef-
ficients are increased. The edges help adjust the posi-
tions of the edge boundaries.

Figure 8 demonstrates this method and shows the
time history of a simulation. Figure 9 shows the final
positions of the template on several images.

For the mouth-open template there were again two
epochs: (i) Coefficients are high for the valley forces
and the teeth forces. They are zero for the edge forces
on the boundary. The teeth forces pull the template to
the mouth, scale and orient it. (ii) The edge coefficients
are increased. The edge forces help adjust the positions
of the edge boundaries. Stage (ii) has not yet been im-
plemented for this case.

Figure 10 shows the potential fields for open mouth
for valleys, peaks, and edges. Note how a combination
of the peak and edge fields is needed to specify the
teeth. Figure 11 shows dynamic sequences of the mouth-
open template successfully running on both open and
closed mouths. For the closed mouth the area of the
teeth region of the template shrank to zero.

The run time on a SUN4 was again between five
and ten minutes.

7 Tracking

It is straightforward to adapt the deformable templates
for tracking. Here we describe a straightforward im-
plementation that tracks eyes automatically given an in-
itial position and a set of potential fields. For the first
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Fig. 7 The potential fields for a closed mouth: (a) the original mouth, (b) the valley field, (c) the peak field, and (d) the edge field. The
figures are organized left to right and top to bottom. The strengths of the fields are shown in greytone; white is strong and black is weak.

Fig. 8 A dynamic sequence for mouth-closed left to right and top to bottom. Observe that the valley pulls the template in, scales it and orients
it. The edge forces do fine tuning.
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Fig. 9. Final results for the mouth-closed templates. The right column shows the final state of the template acting on the mouth in the left column.

Fig. 10. The potential fields for an open mouth: (a) the original mouth, (b) the valley field, (c) the peak field, and (d) the edge field. Note
the strong combination of peaks and edges in the teeth region. The figures are organized left to right and top to bottom. The strengths of
the fields are shown in greytone, white is strong and black is weak.
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e

Fig. il. A dynamic sequence for the mouth-open template on an open and a closed mouth. In the upper picture the template is pulled in by
the peak and edge forces from the teeth. The two valley parabolas are pulled to the bottom of the upper lip and the top of the lower lip. In
the lower picture the template is mainly pulled in by the valley forces and the two valley parabolas contract to the same curve, Note that the
edge fields were switched off for these simulations, so the final positions of the edges should be ignored.

frame, we initialize the template by hand as before, but
for succeeding frames, we use as the initial position
the best fit of the preceding frame. This method ob-
viously succeeds only as long as the best fit at time
t — 1 lies in the basin of attraction of the system at
time 7. In turn this will be true only if: (i) the deforma-
tions and movements of the eye are small (e.g., on the
order of the diameter of the iris) and (ii) the potential
fields are sufficiently clean and accurate (e.g., eyebrows
are not marked as valleys and the smoothing scale p
is long enough to pull in templates from far away).

The first criterion is met by using a high enough
frame rate. The second criterion is met by construc-
ting potential fields in the following way: (i) choose
a scale for the potential fields; (ii) construct peak and
valley energy fields by running robust peak and valley
templates over each frame (see Hallinan 91: Yuille and
Hallinan 92); (iii) perform nonmaximum suppression
on the resulting energy fields; and (iv) suppress peaks
that do not appear within the surround of any valley.
Edge fields are generated by thresholding the gradient
magnitude. The results are smoothed as before with an
exponential decay kernel. However, because valleys and
peaks appear as single points in the results, the
smoothing scale is set longer for valleys and shorter
for peaks to improve tracking by valleys and to minimize
conflicts between intensity peaks on the skin and those
on the whites. To these clean potential fields we then
apply the eye template above.

A final point is that since the acquisition stage pro-
vides a close fit to the eye and since the deformation

is not expected to be great from frame to frame, we
can economize on computation by relaxing the con-
vergence criteria and by turning on the valley-radius
momentum term in the first epoch.

Results of this system for a real eye are shown in
figure 12. Note that a completely automatic system
could be built by incorporating the automatic acquisi-
tion described by Hallinan (1991). Also, robust poten-
tial fields could be generated on the fly using as a scale
estimate the radius of the iris in the previous frame.

Fig. I2. A sequence of images of eyes being tracked. Both the sub-
ject’s head orientation and direction of gaze are varying.
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8 Extensions and Future Work

It seems relatively straightforward to find templates for
the other “internal” features of the face, such as
eyebrows, noses, chins, and moustaches (indeed work
on detection of face outlines is reported by Brunelli
(1991) and Bennet and Craw (1991)). It is less clear
how to generalize this idea to find ‘‘external’’ features
such as the ears or hair, or to find internal regions such
as the forehead or the cheeks. However, Identikit pro-
grams used by police forces are able to represent a
large variety of faces by using a comparatively small
number of templates (120 eyes, for example). Such
programs should be able to guide us in the search for
reliable ways to parameterize features. Our strategy
for the implementation was to use preprocessing to set
the initial values of the template parameters. An alter-
native method would be to start several deformable
templates in parallel and see which gives the best
results. This would require some criteria for selecting
the best fit. A natural choice would be the one with
the lowest final energy function. This, however, might
need to be supplemented by taking into account the
spatial relationships to other features and the a priori
probability of the final parameter values. In some
special cases it may be possible for the energy to be
low but for the parameter values to be extremely
unlikely. Such a situation can occur if the mouth
templates gets started on the eye and becomes grotes-
quely deformed—see figure 13.

Interactions between templates may also be
necessary for detection. The features of the face are
constrained to have certain spatial relationships with

Fig. 13. A grotesquely deformed template. The mouth-closed
template is pulled into the eye. Although the resulting energy can
be small the final parameter values of the template are so strange
that it cannot be interpreted as a mouth.

each other, and this should affect the detection. These
forces might be mediated by springs. Moreover, once
a feature is detected the potential fields corresponding
to it can be removed, thereby making it easier to detect
the remaining features. For example, once the
eyebrows are detected, removing the valley fields
associated with them would make it easier to detect
the eyes.

Progress on these problems is reported by Hallinan
(1991). This includes making the matching criterion
robust and automating the selection of valleys and in-
itial template positions.

Deformable templates seem to have a large number
of possible applications. Another possibility is to use
them for perceptual grouping; a set of these templates
(capable of describing many salient shapes) could in-
teract with the image and those with the best matches
(least energy) would be chosen to order the image. The
visual system would ‘“‘hypothesize” many different
structures, allow them to interact with the image, and
then choose the best. It is unclear, however, how many
templates would be needed, how many different start-
ing points in the image, and how computationally in-
tensive this procedure would be. A second possibility
is to use deformable templates to describe the three-
dimensional surfaces and allow the reflectance func-
tion to be specified by a finite number of parameters
(allowing for possible directions of the light source, dif-
ferent types of reflectance, etc.). Suppose, for exam-
ple, that we have a deformable template representing
the three-dimensional geometry of the nose. The reflec-
tance function might also be specified by a finite set
of parameters (allowing Lambertian plus specularity).
The geometry of the nose and its reflectance will then
be described by a finite set of parameters. This can then
be related to the image by the image-irradiance equa-
tion. There will then (usually) be a sufficient number
of equations to solve for the parameters.

9 A General Formulation of Deformable Templates

Finally we describe a more general formulation of
deformable templates (Grenander et al. 1991; Yuille
and Hallinan 1992; Hallinan 1991). The deformable
template consists of three basic elements:

1. A parameterized Geometrical Model for the feature
including prior probabilities for the parameters. This
corresponds to a geometric measure of fitness.
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2. An Imaging Model to specify how a deformable
template of specific geometry will give rise to
specific intensities in the image. This can be ex-
pressed as an imaging measure of fitness.

3. An algorithm using the geometrical and imaging
measures of fitness to match the template to the image.

It is attractive to formalize this definition in terms
of probabilities. Suppose 7(2) specifies the geometrical
model of the template with prior probability P(g?) on
the template parameters g The imaging mode P(I| T(2))
gives the probability of producing an image / from a
template 7(2). Thus P[I| T(2)]P(Z) can be used to syn-
thesize features.

Bayes’ theorem can be used to obtain a measure of
fitness. We write

This gives us a probability of detection of a template,
P[T(Z)| 1], in terms of the imaging model and the prior
probabilities. By maximizing P{7(2)| /] with respect to
g we can find locally optimal candidate matches. One
can also use P[T(2)| 1] as a confidence criterion for the
matches.

10 Conclusion

A serious problem for detection of edges, or other
feature, seems to lie in combining local information,
which may be easily obtained, into a global structure.

For the purpose of detecting facial features, however,
a lot more a priori information is available and a de-
formable template is able to capture it. Moreover, such
templates are not only able to detect a feature but can
also provide a description of it for classification and
matching to a data base.
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