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Some computational theories of motion perception assume that the first
stage en route to this perception is the local estimate of image velocity.
However, this assumption is not supported by data from the primary
visual cortex. Its motion sensitive cells are not selective to velocity, but
rather are directionally selective and tuned to spatio-temporal frequen-
cies. Accordingly, physiologically based theories start with filters selec-
tive to oriented spatio-temporal frequencies. This paper shows that
computational and physiological theories do not necessarily conflict,

~ because such filters may, as a population, compute velocity locally. To
prove this point, we show how to combine the outputs of a class of
frequency tuned filters to detect local image velocity. Furthermore, we
show that the combination of filters may simulate ‘Pattern’ cells in the
middle temporal area (MT), whereas each filter simulates primary visual
cortex cells. These simulations include three properties of the primary
cortex. First, the spatio-temporal frequency tuning curves of the in-
dividual filters display approximate space-time separability. Secondly,
their direction-of-motion tuning curves depend on the distribution of
orientations of the components of the Fourier decomposition and speed
of the stimulus. Thirdly, the filters show facilitation and suppression for
responses to apparent motions in the preferred and null directions, respect-
ively. It is suggested that the MT’s role is not to solve the aperture
problem, but to estimate velocities from primary cortex information. The
spatial integration that accounts for motion coherence may be postponed
to a later cortical stage. -

1. INTRODUCTION

The assumption that the visual system estimates velocity locally is central to some
computational theories for visual motion perception (Hildreth 1984; Yuille &
Grzywacz 1988¢, b). These theories, and others, combine these estimates spatially
(Hildreth 1984 ; Yuille & Grzywacz 19884, b; Bulthoff ef al. 1989) and temporally
(Grzywacz et al. 1989) to explain coherent motion percepts and to solve the
aperture problem (Marr & Ullman 1981 ; Adelson & Movshon 1982 ; Hildreth 1984).
(This problem is the impossibility to measure locally, velocity components other
than that parallel to the luminance gradient.) The velocity-estimate assumption
is supported by the high precision with which humans estimate motion direction
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(Levinson & Sekuler 1976) and speed (McKee 1981; McKee & Nakayama 1984;
McKee et al. 1986).

However, motion-sensitive cells in the primary visual cortex do not detect
velocities, but rather are directionally selective and tuned to spatio-temporal
frequencies (for reviews on cortical motion analysis see Nakayama (1985);
Maunsell & Newsome (1987); Andersen & Siegel (1989)). One can roughly
decompose these cells’ spatio-temporal tuning curves into the product of separate
spatial and temporal frequency responses (Ikeda & Wright 1975; Tolhurst &
Movshon 1975 ; Holub & Morton-Gibson 1981) (although this decomposition does
not hold in the cat’s Area 18) (Bisti ef al. 1985 ; Galli et al. 1988). Further evidence
against velocity selectivity and for frequency tuning (Movshon ef al. 1980) is the
dependency of single cells’ directional tuning on stimulus shape (Hammond 1979,
1981) and speed (Hammond & Reck 1981).

Accordingly, physiologically motivated theories use directionally selective fre-
quency tuned filters (Poggio & Reichardt 1976; Adelson & Bergen 1985; Watson
& Ahumada 1985) of which, the spatio-temporally oriented are the most relevant
for this paper (motion energy filters, Adelson & Bergen (1985)). The main compu-
tational motivation underlying the use of spatio-temporally oriented filters is that
image motion is characterized by orientation in space-time (Fahle & Poggio 1981
Adelson & Bergen 1983). There is evidence that cells in the primary visual cortex
detect such orientation (Emerson ef al. 1987a, b; McLean et al. 1987). Further-
more, it has been shown that spatio-temporally oriented models correctly predict
the facilitation and suppression for responses to movement in the preferred and
null directions, respectively (Emerson ef al. 1987a). (The preferred direction is the
one for which a stimulus elicits the maximal response from a cell. On the other
hand, the null direction is the one yielding the weakest response.)

An additional step necessary for the success of these ‘physiological’ theories is
to compute image velocities. Heeger (1987) presented an elegant model that
computes velocities through the spatio-temporal integration of the outputs of
Gabor motion energy filters (Gabor 1946; Daugman 1985). Unfortunately, there
is no computational rationale to integrate these outputs as in his model, and the
model agsumes that the image’s power spectrum is flat; this is often incorrect.
Another model that uses directionally selective frequency-tuned filters to compute
the component of velocity in the direction orthogonal to oriented structure in the
image has been proposed (Fleet & Jepson 1989). However, this model does not
compute the full velocity vector.

We introduce a method to estimate local velocity from the outputs of motion—
energy filters that is correct for any pure translation. These local velocity estimates
allow one to use computationally motivated schemes for the spatial (Hildreth
1984; Yuille & Grzywacz 1988a,b; Bulthoff ef al. 1989) and temporal (Grzywacz
et al. 1989) integration of velocities. Also, this locality may be critical for the
system’s ability to detect motion boundaries in a natural way (§6). This paper
proves theorems on the velocity estimates and shows that the method is generally
consistent with cortical physiology. In particular, it is shown that each filter shares
three properties with cells in the primary visual cortex: approximate spatio-
temporal separability; directional tuning dependency on stimulus shape and
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speed; facilitation and suppression for preferred- and null-direction motions,
respectively. Moreover, one can wire up the filters’ outputs to new cells such that
they are velocity selective and consistent with Mt ‘ Pattern’ cells (Movshon ef al.
1985; Rodman & Albright 1989). This suggests that the Pattern cells may
correspond to the velocity selective cells found in MT (Newsome ef al. 19873 ; see §6).
The circuitries that we describe use the wide bandwidth of the primary cortex
temporal tuning curves to their advantage; (wide, that is compared with the
relatively well-tuned spatial tuning curves). Also, these circuitries profit from the -
inverse relation between the optimal spatial frequencies and receptive field size.

The intention here is not to fit cortical data in precise detail, but to propose a
general theory of early visual computations that accounts qualitatively for several
critical experiments. In particular, the new model makes two assumptions that are
‘dubious’ in physiological details: Gabor models for receptive fields (Daugman
1985 ; Heeger 1987) and the square of the output of the filters as cells’ responses
{Adelson & Bergen 1985; Heeger 1987). To achieve generality, the effects of
relaxing these assumptions are discussed. '

The organization of the sections of this paper is as follows: §2 introduces our
method, proves that it estimates local image velocities for general translations
correctly, and suggests neural circuitries to implement the new model. Section 3 -
compares the new method with Heeger’s (1987). Sections 4 and 5 compare the
behaviour of the method with that of the primary visual cortex and mT, respect-
ively. Finally, §6 discusses the possible implications of the results of this paper
. with particular emphasis on computation and physiology.

The material in this paper has previously been presented as an abstract (Yuille
& Grzywacz 198ga).

2. TaE MODEL

The model has two stages. The first measures motion energies (the output of
motion-energy filters) and the second estimates velocity from these energies. This
section starts with the description of the first stage (§2.1). Then, in §2.2, we analyse
the distribution of motion energies over the filters for image translations. Finally,
strategies and neural implementations for the estimate of velocity from this
distribution are presented (§2.3).

2.1. Descﬁption of the model

The starting point for the model (figure 1) is the observation that image motion
is characterized by orientation in space—time (Fahle & Poggio 1981; Adelson &
Bergen 1983).

Adelson & Bergen (1985) suggested that one can detect this orientation with
spatio-temporally oriented filters. Such a filter is

2
Fix,t:QnQ, 0,0)= "-—-l—)exp («—ﬁ)

(2miot(a, 202

2
xexp(—iQn'x)exp(——éé;E)exp(—i.Q,t), {2.1.1)

t

where x and ¢ are a spatial location in the image and time, respectively, o > 0,
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Fiaure 1. Image translation ag space—time orientation and its detection by spatio-temporally
oriented filters. The figure illustrates the contour plot of a cosine Gabor filter {equation
{2.1.2)) and three velocities of a slit of light. Velocity 1 would elicit the maximal response
from the filter, as it crosses its centrai positive portion. On the other hand, velocity 2 is too
slow and fails to elicit a strong response from the filter. Finally, velocity 3 has the right
speed but the wrong direction, thus erossing negative portions of the filter ; ((——), positive;
(ovee ), negative.

o, > 0, 2, and £2, are scalar parameters, and n = (cos #, sin 8} is a unit vector. For
convenience, we will sometimes combine the spatial magnitude 2 and direction n
into the vector 2 = (£2,,82,) = 2n. Later in this section, we discuss the physio-
logical meanings of the parameters and variables. This filter is similar to the ones
used by Heeger (1987), as its real part is the cosine-phase Gabor filter (Gabor
1946; Daugman 1985}:

x|*

—2) exp(——ﬁ—) cos (2n-x+82,1), (2.1.2)

Gabcos(x, t) = mexp(— 20 20_‘?

and its imaginary part is minus the sine-phase Gabor filter:

o) oxp = s sin @n-x+ 2,0, (213)

e e

This filter is oriented in space-time (figure 1).
From equation (2.1.1), we model the responses of directionally selective cells in
the primary visual cortex to an image, I(x,¢}, as the nonlinear filter,

Nx,t:2.nQ,,0,0)=F(x,t:Q.nQ2,0,0)*Ix1) (2.1.4)

where * represents convolution. This definition is similar to the one proposed by
Adelson & Bergen (1985), who call it motion energy.
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To understand to what aspects of the signal such filters are tuned, it is useful to
look at the Fourier transform of equation (2.1.1):

2
xexp(lf*'—‘;’)ff-z)exp(—(“’—f%&’—‘z), (2.1.5)

where the overline stands for Fourier transform, a* = (—sin#,cosf) is a unit
vector orthogonal to n, and @ and w, ate a location in the spatial-frequency domain
and temporal frequency, respectively. This equation suggests that the non-linear
filter defined in equation (2.1.4) is tuned to sinusoidal gratings that have spatial
frequency €, travel in the direction n, and have temporal frequency 2, with o and
o, determining the sharpness of the tunings. Furthermore, these tunings are
separable in n, 2, and £,.

Equation (2.1.5) suggests a physiological interpretation for the model as
follows. The variable N is the response at time ¢ of a primary visual cortex cell,
whose centre of receptive field lies at position x in the image. Alternatively, one
may interpret N as the sum of the responses of two cells with the same preferred
direction, but whose spatio-temporal profile is 90° out of phase, that is, a quad-
rature pair (Pollen & Ronner 1981). The sizes of the receptive field and its temporal
window are o and o,, respectively. The direction, spatial frequency and temporal
frequency of the sinusoidal stimulus eliciting the maximal response are n, £2, and
2,, respectively. Following these interpretations, the analyses below do not assume
that o and o, are constant for all cells. Cells with large optimal spatial frequency
have small receptive field size and vice versa (Hochstein & Shapley 1976; Maffei
& TFiorentini 1977; Andrews & Pollen 1979). For generality, and from data
appearance (Bisti ef al. 1985), we also allowed the cells’ optimal temporal frequency
and temporal window to interdepend. At some stages, the analyses use, with
computational advantage, the assumption that the bandwidth of the temporal
frequency tuning curves is relatively wide compared with the spatial bandwidth.
The assumption states that for all velocities, v, to which the cells respond the
following relation holds: (|v}a,)? € ¢®. Informally, it was verified by literature
inspection that typically 3 < (o/(lv| 7,))* < 60.

Because equation (2.1.5) is separable in a, £, and £,, it strongly suggests that
for moving images, the filter (equation (2.1.4)) is not tuned to any particular
velocity. Figure 2, based on calculations presented later in this paper, confirms
this suggestion.

One filter cannot estimate the velocity, o, but, as we will show in the next
section, the set of filters responding most vigorously can.

. _ 2 2
Flo,w,:2,n,8,0,0,) = __Lexp(_w)
(2m)

2.2. Velocity estimate

This section shows that the largest responses of the motion-energy filters as a
function of their optimal spatial frequency, optimal temporal frequency and
optimal direction of motion can determine velocity uniquely. To do so, three
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Fieuzre 2. Motion-energy filters are not speed selective. The plots are the speed tuning curves
for the responses of a motion-energy filter to translating sinusoidal gratings (equation
(4.2.2)). These curves’ maxima occur at increasingly higher speeds as the gratings’ spatial
frequency decreases. If the filters were speed selective, all the maxima would oceur a$ the
same speed.

theorems and two corollaries are proven. Before each of them, we briefly describe
their physiological meaning.

The starting point of these mathematical results is the observation that the
spatio-temporal power spectrum of a translating image lies on the plane
o 'v+w, = 0 in the frequency domain (Watson & Ahumada 1985; Heeger 1987;
Daugman 1988). This suggests using the combination of the outputs of cells tuned
to specific spatio-temporal frequencies to detect this plane. Our results show how
to combine these cells’ responses in a computationally sensible way.

The following theorem says that ‘if one defines primary visual cortex cells by
their optimal temporal frequency and two optimal spatial frequencies (the hori-
zontal and vertical components of the optimal spatial-frequency vector), then in
this three-dimensional space, for translations, the maximal responses lie on a
known plane.’ This result is not a trivial consequence of the knowledge that-the
spatio-temporal power spectrum of a translating image lies on a plane (Watson &
Ahumada 1985 ; Heeger 1987 ; Daugman 1988). The plane that the theorem refers
to is a plane in the space of the cells’ parameters. Actually, one can show that
filters other than Gabor filters do not have the same property (this is related to
the scale~space theorems; Yuille & Poggio (1986)). The theorem is strictly correct
only when the receptive field sizes and temporal windows are constant for all cells.
However, in Theorem 3 and its corollary, we show that this constancy requirement
can be relaxed under physiological conditions. Figure 3 illustrates the conclusion
reached with Theorem 1.
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Freure 3. Most of the distribution of motion energies lie near the plane Qn-v+£, = 0 in the
space of the cells’ optimal frequencies (2n = (22,,2,) and 2,). (a) This figure shows this
distribution for a translating dot (equation (4.2.6)) and indicates the plane where the motion
energies (sum of responses of quadrature pairs of directionally-selective frequency tuned
cells) are maximal. The motion energies rapidly decrease as the distance of the filters’
optimal frequencies from the plane increases ; diameter = cell response. (b) This figure shows
a two-dimensional cross section of a distribution like the one in (a).
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THEOREM 1. If o and o, are constanis, then the local mazima of N(x,t:2,n,Q,, o,

a,) as a function of ($2, n,82,) lie on the plane 2n-v+£2, = 0 for all images that move
with a constant velocity, v

This result follows from a corollary of a stronger result: Theorem 2. Theorem
2 will provide the response distribution in the three-dimensional space defined by
the cells’ optimal spatial and temporal frequencies.

TrEOREM 2. The response N(x,t:0,8,,0,0,) i8 weakly separable as follows: a
SJunction p exists such that N{x,t:2,Q,0,0,)=px,t:0*R—0}Q,v,0,0,)exp
(= (o} 0*) (82,4 (£2-©))*/(2(0* + o} v*)}). Hence the only dependence of N on the spatial
characteristics of the stimuli occurs within the function p.

Proof. See Appendix 1.

The following corollary shows that if the receptive-field sizes and temporal
windows are constant, then the responses follow a known Gaussian distribution
centred on the plane of theorem 1. Thus the claim in Theorem 1 follows from this
corollary. Figure 4 illustrates that this Gaussian distribution has a constant
orientation relative to the plane, simplifying the plane’s search.
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Fiaure 4. Two special cases where the distribution of motion energies in the space of the filters’
optimal frequencies is simple. One such case ocours (corollary 1) when the receptive field
sizes, o, and temporal windows, o,, are constant. In this case, the motion-energy distri-
bution follows a Gaussian distribution centred on the plane of theorem 1 (the solid line
shows the plane’s cross section) and with constant orientation relative to the plane. This

- orientation is not necessarily perpendicular to the plane. Another special case occurs
(corollary 2) when o, is small in comparison to o, that is, when (¢,|0{)® < ¢*, where v is the
plane’s velocity. In this case, even if o, and o depend on the filters’ optimal frequencies, the
motion-energy distribution has a constant orientation : parallel to the temporal frequency
axis. Moreover, this distribution has its maximum on the plane. The assumption of wide
temporal tuning is approximately correct under physiological conditions; (——) wide tem-
poral tuning; (---), constant tunings.

CoroLLARY 1. If o and o, are constants, then the variation of N(x,t:£2,£2,,0,0,) in
the (82, 2,) space in the direction ((vo,)/0% 1/0,) is a Gaussian function cenired on
the plane Qn v+, = 0, and dependent only on v, o, and o,.
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Proof. The arguments (02—0?Q,v)} of the function p do not vary in this
direction. The only variation is therefore due to the Gaussian function
exp(— (o} 0%) (2, + (2 v))*/(2(c* + o} v?))). This Gauseian is centred on the plane
OQnv+Q, =0.

Theorem 3 asserts: ‘If the temporal tuning curves’ bandwidths are wide relative
to the spatial ones, then irrespective of the receptive field sizes and temporal
windows being constant, the response distribution in the optimal-frequency space
is of a simple form.’ This result is important, because the receptive field sizes and
temporal windows may depend on the cells’ optimal frequencies (§2.1). We denote
these dependencies by o(f2) = K(|£2()/|62} and 0,(R2,) = K,(£2,}/|82,|, where K and
K, are functions that are mildly dependent, or perhaps independent, of ¢ and
o,, respectively. More precisely, Theorem 3 assumes that for all velocities, », to
which the cells respond, (lv] 0,)* € ¢*. An informal literature study seems to justify
this assumption (§2.1).

THEOREM 3. Given the approzimation |v|* <(c/g,)?, and remembering that
o, = 0,(82,) and o = o(82), we find that the response N(x,i: 9, ,,0,0,) is weakly
separable in the sense that there exists a function r, independent of Q, and o,, such
that N(x,t:2,2,,0,0,) = r(x,t: 2, o) exp (— o} (2, + (2 v))*/2).

Proof. See Appendix 2. i

Corollary 2 shows that in the three-dimensional space of optimal frequencies,
the response distributions as function of temporal frequency have maxima on the

plane defined in Theorem 1. This means that the overall distribution has a maximal
ridge on the plane. Figure 4 illustrates that under the approximation (jv| ,)? < o,

response

- temporal frequency of cells

Fieure 5. The motion-energy distribution when the cells’ temporal window, ¢,, depends on their
optimal temporal frequency, £2, (equation (2.3.1}). This distribution, which is peaked on the
translation plane, is only Gaussian when ¢, is constant. Otherwise, for monotonically fallin
dependencies of o, on £,, a positive skewness appears; (—), &, = const.; (---), const./£2;
(), const./Q,.
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the distribution of motion energies is oriented parallel to the temporal frequency
axis. Figure § illustrates the distributions along such a line for different
dependencies of &, on £,.

CoroLLARY 2. With the same assumptions and approximations as Theorem 3, along
a one-dimensional line parallel to Q, axis, the mazimum of N(x,t:02,9Q,, o, o,) lieson
the plane - v+, = 0.

Proof. Consider the set of lines parallel to the €2, axis. The only variation of
N(x,t:2,2,,0,0,) is due to the exp (—o}(2,+ (2 v))?/2) term, which is unimodal
with maximum at Q-v+Q, = 0.

2.3. Strategies and neural implementations for velocity estimate

We now describe three related methods for finding the velocity of the stimulus
by using the mathematical results of the previous section, and discuss possible
neural implementations.

The previous section suggests that although primary visual cortex cells are not
velocity selective, their population responses may be so. We think of these cells as
forming a three-dimensional space defined by their optimal temporal frequency
and two optimal spatial frequencies (the £ components). If these parameters span
sufficiently large ranges, then the cells’ strongest responses lie close to the plane
Qn v+, =0 for an image translating with velocity v. In cat, these ranges are
five to six octaves large (Holub & Morton-Gibson 1981). '

The problem is how to estimate velocity from the combination of the outputs
of motion-energy cells (quadrature pairs of directionally selective frequency tuned
cells), whose centres of receptive field lie in a single spatial location. This locality
may be critical for the system’s ability to detect motion boundaries in a natural
way. We discuss some computational, psychophysical and implementational
aspects of thig problem.

Computations

As there are only a finite, though probably very large (Nauta & Feirtag 1986),
number of cells, efficient sampling is important (Jasinschi 1988). One cannot, for
example, compute derivatives of responses with respect to the filter parameters to
determine the velocity from the strongest responses by using Theorem 1. We
require, however, that the theory yields the correct velocity as the sampling
becomes arbitrarily dense. The principal issues, given the need for sampling, are
how to weigh the responses of cells depending on their magnitudes and distance -
from the origin in the three-dimensional space defined by the cells’ optimal fre-
quencies. The magnitude of a cell’s response depends on the spatial characteristics
of the image as well as on the velocity. For example, one may get a cell far away
from the plane responding more strongly than a cell in the plane. From the
separability result in Theorem 3, we know that this difference is due to these two
cells having different spatial frequencies. Thus it would be unfair to compare them
directly. One should prefer to compare cells with similar spatial frequencies. The
further away a cell is from the origin, the better the cell is for estimating v (figure
6), so it is desirable that the sampling size in this space grows linearly with distance
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from the origin. Data supporting this scaling comes from the decrease of receptive
field size when the cells’ optimal spatial frequency increases (Hochstein & Shapley
1976; Maffei & Fiorentini 1977; Andrews & Pollen 1979).

temporal frequeney of cells

spatial frequency of oells

Fieure 6. It is desirable that the sampling size in the space defined by the cells’ optimal
frequencies grows linearly with distance from the origin. In this figure, the diameters of the
circles represent the frequency bandwidth of motion-energy cells. The angle between the
lines starting at the origin and tangential to the circles represents thé velocity uncertainty
of the motion-energy cells. This is because the velocity plane (Theorem 1) crosses the origin.
If all the cells had the same bandwidth, cells near the origin would have large uncertainty
(angle between dashed lines). On the other hand, if the bandwidth scaled with distance from
the origin, then all cells would have the same uncertainty {angle between solid lines).

Psychophysics

The phenomenon of transparency shows that humans can perceive several
velocities at the same point; the theory must be able to deal with this effect. In
§6, we describe how the theory may cope with the transparency and the perhaps
related problem of motion boundaries. The theory must also deal with the aperture
problem at large; i.e. if the image motion is consistent with an infinite set of
possible velocities, then the smallest velocity is perceived.

Implementation
Neuronally plausible elements must be the basis of the theory’s implementation.

To some degree, this means that one should prefer to use computational elements

that have been identified by neurobiologists. But most important, neuronal plausi-
bility strongly suggests the Principle of sloppy workmanship (Huggins & Licklider
1951; Ratliff 1665). This principle states that neural networks in the nervous
system perform very well without relying on the precision of their anatomical
details and neural responses (von Neumann 1958). Thus the computational success
of such a network should not heavily depend on the network’s mathematical
details. We argue that this principle suggests a simplicity of connectivity. A
‘sloppy-workmanship’ developmental process would prefer to wire up the brains’
computations with the minimal number of connections to minimize errors.
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here are many possible strategies for computing the velocities, given these

results. In this paper, we discuss three closely related examples.

The

ridge strategy

This strategy uses corollary 2 as a starting point and proposes excitatory
connections from each motion-energy cell to the velocity selective cells most
consistent with it (figure 7). These connections should have a weak preference for
velocities with small components perpendicular to the preferred direction, so as to

give

a unique answer for the aperture problem in the large. It is a straightforward

method that might be favoured by a neural system, because of its robustness.
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Ficurp 7. The Ridge strategy. In the top part of the figure, the centre of the open circles

represent some sampling locations in the space of the cells’ optimal frequencies. The
diameters of the circles are not bandwidth here. The cross sections of two velocity planes
(corresponding to velocities v, and v,} are shown and seven motion-energy cells (diree-
tionally selective frequency tuned cells) are labelled. In the bottom part of the figure, we
ghow how each of these seven cells make excitatory connections to cells tuned to the
velocities v, and v, The number of lines in each connection represents the connection’s
strength. Motion-energy cells, whose parameters are close to a velocity plane make strong
connections to the corresponding velocity cells. Otherwise, if the motion-energy cells are far
from the plane, then the connections are weak. To calculate the input’s strengths, we used
equation (2.3.1). A part of the model not shown here is a winner-take-all mechanism to
choose the strongest velocity cell. Also, we do not illustrate the implementation of the
solution to the aperture problem in the large {equation (2.3.1)).-
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Suppose we have a set of M motion-energy cells (¥, 0%, o4} with p = 1,...,
M. A posgible implementation is to define the response, R(x,¢:v), at time ¢ of a
velocity selective cell tuned to velocity v, and whose receptive field is centred at
poeition x, by:

Rix,t:0) = A N(x,t: Q¢ ¢, o#, gt) e~ (oD @@ )2 o-(- 2ol (9 3 1)
s
where £* is orthogonal to 2, and 4 and % are constant parameters.

This equation suggests that the strength of the connection between cell
(£, 2%, o*, o#) and the velocity selective cell tuned to the velocity v should be
exp (— (0%)? (@ + (2*-©))*/2) exp (— (o~ D*/R)?).

This method is similar to correlation and template matching methods in
computer vision. If we fix £ and let 2, vary, then from Theorem 3, we know that
the form of the variation of the filtered response is exp (—o(£2,+ (£2-v))?/2); this
defines our template. The largest value of the correlation of this template with
N(x,t: £, ), as we vary the value of v while fixing £2, gives an estimate for the
velocity. To combine the results as £ varies, we simply add the magnitude of the
responses for each £2. The factor exp (—(v-£0**)/k)® is designed to prevent the
aperture problem in the large (if the image motion is consistent with an infinite set
of possible velocities, then the smallest velocity is perceived). The parameter k
should be sufficiently large to maintain the validity of the results of §2.3.

Several velocity selective cells will be excited and the one with the largest
response corresponds to the velocity estimate. A winner-take-all mechanism
(Feldman & Ballard 1982 ; Koch & Ullman 1985; Yuille & Grzywacz 1989b) may
then select the maximally responding cell. Such a mechanism is consistent with
the inhibition of Pattern cells when stimulated with a motion not parallel to their
preferred direction (J. A. Movshon, personal communication). A supralinear
dependence (with positive second derivative) of the activation of the velocity selec-
tive cells on their input might account for the facilitatory way that lirectionally
selective units appear to interact (J. A. Movshon, personal communication;
Ferrera & Wilson 1987).

This method is local, parallel, and instantaneous, gives the right answer for
arbitrarily dense sampling, and degrades well as the sampling becomes more
sparse.

The estimation stralegy

This strategy attempts to estimate the image’s spatial characteristics and com-
pute the velocity simultaneously by minimizing a goodness-of-fit criterion.”
Theorem 3 underlies this strategy, by providing the form of the variation of the
motion-energy cells’ response distribution in the €2, direction. If one places several
cells on the same line in this direction, then one can estimate the distribution on
this line (figure 8) obtaining measurements for velocity computations. Without
such an alignment the problem would be ill-posed, because with only a finite
number of cells, there would be insufficient information to estimate the signal and
the velocity.
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response

‘ temporal frequency of cells }

F1cUrE 8. The estimation strategy. The figure shows the motion energies of a moving dot
sampled by seven motion-energy cells aligned parallel to the temporal frequency axis. The
estimation strategy computes the image’s spatial characteristics and velocity by finding the
amplitude and centre of the motion-energy distribution, The procedure finds the best fit of
the expected distribution (theorem 3) to the data; (+), motion energies; (——) correct
estimate; (——), incorrect estimates.

More precisely, from Theorem 3 we know that:
N(x,t: 02,9, 0,0,) = r(x,i: Q) e ci@+@" on/z, (2.3.2)

The function r(£2) is unknown and depends on the form of the image. However it
will be constant as we vary £2, keeping £ constant.

To estimate velocity and the image's spatial characteristics, one can minimize
a goodness-of-fit criterion E(v, 7(2)), both with respect to v and (), given a set
of measurements N(x,¢: 2, Q¢ o*, of) for u=1,... M. We choose the standard
least-squares fit criterion:

Ew,r(),0,0,) =3 (N(x,t:9¢, Q8 ¢, 0,) —r(x, t: Q) e oi@+@an'itg (9 3 3)
P :
Now, suppose we have M motion-energy cells (£#,£¢), which are arranged to lie
on L lines (¥ = 1,...,L) in the 2, direction. How many cells and how many lines
does one need to estimate velocity ? Along a line, the motion-energy distribution
has only two parameters that one can estimate: the amplitude and the optimal
temporal frequency. It is possible to show that to find these parameters, one needs
measurements from two cells (two equations with two variables). Of those two
parameters, the one depending on velocity is the optimal temporal frequency,
which equals —f2-v. Thus the optimal temporal frequency provides a single
equation for two variables: the velocity components. It follows that one needs at
least two lines to estimate local velocity. In summary, the theoretical minimum
necessary to estimate local velocity is to have two lines with two cells each. In
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practice, however, it is best to have many lines and more than two measurements
per line. Denote the values of r(£2) on the lines as r* for v =1,...L. Then the
goodness-of-fit criterion becomes:

E(v,r) = 3 (N(x,t: Q" ¢, 0, 0,) — () e~oT@H oY)z (2.3.4)
M
One of the ways to find the velocity v that minimizes this equation is ag follows.

Because the goodness-of-fit criterion, E{v, ), is quadratic in #*, we can obtain by
differentiation a system of L linear equations and L variables, whose solution gives

the best 7” as a function of v. By substituting back for » one obtains a cost function, X

E(v). This function may be fed to velocity selective cells, that is, a cell selective
to velocity v would receive input £(v). Among these cells, the one with the smallest
response corresponds to the velocity estimate.

This method is local, can be implemented in parallel, is instantaneous, gives the
correct answer even for a finite number of cells (in principle), and should degrade
‘well with noise. Unfortunately it may not be biologically plausible.

The exira information sirategy

This strategy uses the outputs of purely spatial frequency tuned cells to calculate
the spatial characteristics of the image. This information can then be used to
modify the estimation strategy by giving estimates for the form of r(£2). We do not

- discuss this method in detail here.

3. CoMPARISON WITH HEEGER’S METHOD

This section compares our model to the method presented by Heeger (1987).

As in our model, his method starts with the calculation of motion energies
(equation (2.1.4)). He also points out that motion energies are not velocity selective
mechanisms, but rather are tuned to particular spatio-temporal frequencies.

To extract velocities from motion energies, Heeger first convolves the motion
energies with a three-dimensional Gaussian window. Thus he estimates the average
velocity within this window.,

Next, the implementation compares the distribution of this convolution over
the filters with the distribution expected for a particular stimulus: a moving flat-
power-spectrum texture. In the case that the stimulus indeed has a flat power
spectrum, the correct velocity can be found by matching the predicted and the
measured energies. He also deals with a case where this condition is not met; when
the contrasts are different for different spatial orientations.

Finally, Heeger suggests a parallel network that can compare the motion
energies of the image and of the flat-power-spectrum texture.

In general, Heeger's method gives accurate velocity estimates for translating
textured patterns, some sine-grating plaid patterns, and natural textures, and
appears to simulate psychophysical data on the coherence of sine-grating plaids
(Adelson & Movshon 1982).

However, we see three main problems with Heeger's model.

The first problem is the flat-power-spectrum assumption, which will lead to
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incorrect velocity estimates for several images. His correction for different con-
trasts at different orientations is a limited attempt to solve this problem. Our
method, however, does not suffer from this assumption and estimates velocity
correctly for a greater variety of stimuli (§2.2).

A second problem with Heeger’'s method has to do with his spatio-temporal
integration of motion energies. The range of his spatial integration is not limited
to the cells’ receptive field size, but also spans across cells whose centres of receptive
field lie in different spatial locations. A manifestation of this problem is the
smoothing that occurs when the integration windows straddle motion boundaries
(Heeger 1987). As we have shown, this type of integration is unnecessary to
compute velocities. We argue that there is no computational rationale to integrate
motion energies over space as his method does. In contrast, our method performs
loca! velocity estimates (for example, equations (2.3.1) or (2.3.3)), and thus allows
for integration methods that have an explicit computational rationale (Hildreth
1084; Yuille & Grzywacz 19884, b; Bulthoff et al. 1989; Grzywacz et al. 1989).

Finally, our weakest objection to Heeger’s method is the suggestion that his
parallel implementation, to compare the motion energies of the image and of the
flat-power-spectrum texture, is & model for Mt cells. The method uses mathemat-
ical operations that may not be easy to implement biologically (Ratliff 1965;
Grzywacz & Koch 1987; Grzywacz & Poggio 1989, cf.:§2.3).

4. COMPARISON WITH PRIMARY VISUAL CORTEX

This section shows that the behaviour of the new model may account for some
of the data obtained in the primary visual cortex. In particular, three character-
istics of the primary visual cortex are discussed: space-time separability (§4.1),
directional tuning (§4.2) and responses to apparent motions (§4.3). The part of the
model identified with the primary visual cortex are the outputs of the motion-
energy filters (equation (2.1.4)). Section 6 discusses how the combination of these
outputs (§2.3) may account for the behaviour of Mt.

4.1. Space-time separability

This section shows that the model accounts for the rough space-time separability
of spatio-temporal tuning curves of primary visual cortex cells (Tkeda & Wright
1975; Tolhurst & Movshon 1975; Holub & Morton-Gibson 1981). We show that
the model is not strictly separable, but that it is approximately so. This
approximstion follows from the separability of the Fourier Transform of the Gabor
filters (equation (2.1.5)). However, this approximation is not reilated to the
separability discussed by Poggio & Reichardt (1973, 1976). They showed that
models consisting of linear filters separable in the space-time domain and followed
by second-order nonlinearities have separable spatio-temporal frequency tuning
curves in the average. (Examples of second-order nonlinearities include multi-
plication and squaring.)

To explore whether the model displays this separability, one must calculate
equation (2.1.4) for moving sine gratings, whose luminance gradients are parallel
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to the filter’s preferred direction, n. Let us neglect the background lauminance and
write the equation for these gratings as:

I(x—ot) = I, 8in (An* (x — vt)). . {(4.1.1)

The experimental spatio-temporal separability is claimed for time-averaged
responses. Accordingly, we calculate the average response (see Appendix 3):
(N(x,t:2,n,8,,0,0,)) = [ @' g-Qnori’el 4 11 g-0+0)e" o~nv-0%a},

: (4.1.2)

As a function of the spatial frequency, A, and temporal frequency, a = An-v, this
equation consists of two Gaussians centred at (A, ) = 1 (2, —82,) (figure 9).

temporal frequency of grating

1
10

spatial frequency of grating

F1oURE 9. Approximate space—time separability of the spatio-temporal tuning curves. This is
a contour plot of the apatio-temporal tuning curve for a motion-energy cell {equation
(4.1.2)). The solid line represents a crosa section of the velocity plane. Because sinusoidal
motions with all their parameters changing sign remains the same, and as the plots are
confined within the quadrants, the cell’s tuning curve is approximately separable. This
means that for two fixed temporal frequencies, the response dependencies on spatial
frequency are roughly the same up to normalization. A similar conclusion holds if one fixes
the spatial frequency and varies the temporal frequenay.

Equation (4.1.2) shows that the separability found experimentally also occurs
in the model. In the experiments, the tuning curves die well before the zero spatial
and temporal frequencies. From the model’s perspective, this means that Q¢ » 1
and £, 5, » 1, because, in this case, the contribution of each Gaussian to the other
Gaussian’s quadrant ig negligible. Then, because sinusoidal motions with all the
parameters changing signs remain the same, the tuning curve represented by
equation (4.1.2) is Ifexp(—(A—)®) exp(—(x+£,)0?). This tuning curve is
separable in space and time. '
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4.2. Directional tuning

The directional tuning of directionally selective complex cells tends to be uni-
modal, when stimulated with bars or low speed dot textures but bimodal for high
speed dot textures (Hammond 1979, 1981; Hammond & Reck 1981). Whenever
this tuning is bimodal, the two preferred directions are distributed symmetrically
about the bar’s preferred direction.

This section shows that the model accounts for these observations. Our results
confirm the arguments of Movshon et al. {1980) that these phenomena are con-
sistent with spatio-temporal frequency tuned cells. Their idea comes from the
observation that dots have Fourier components in all directions. Furthermore, the
speed of a given component for a moving dot decreases with this component’s
angle with the direction of motion. Thus, if a dot moves fast, to elicit maximal
response from a given spatio-temporal filter, the dot should not move parallel with
the filter’s best direction because in that case, the optimal Fourier component for
the filter can move at the optimal speed. However, if a dot moves slowly, then it
should move in the best direction of the filter, so that the optimal Fourier
component has the best possible, though not optimal, speed. A potential problem
with these arguments is that they do not take into account the contributions of non-
optimal Fourier components. Our results show that this problem can be neglected.

For the sake of simplicity, we use sine gratings instead of bars and single dots
instead of dot textures. _

Consider the equation for the sine grating, whose luminance gradient unit
vector, §, may not be parallel to #, and whose velocity is in the direction &, that
is, v = [vl§: I{x—vt) = I, 8in (A& (x —vt)). (4.2.1)
We can calculate the time-averaged value of N as in equation (4.1.2):
N(x,t:2,n,2, 0,0,))

= Ial e—(a—nta)'c' e-(amm,)'a; e-(m-c*)'a' + If e—(A-i-D'{)'a"e—(J\Iul-ﬂt)'n'f e—(m-{“)'a". (4_2_2)

Let ¢ correspond to the orientation of the sine grating (& = (cos ¢, sin ¢}), then by
differentiating equation (4.2.2), one obtains:

O(N(x,t:2,n,22,,
¢
where §* = (—sin ¢, cog ¢). This approximation assumes that we are close to one

of the Gaussians, that is, in the separable region of §4.1. Thus the optimal
directions of motion approximately satisfy the following equation:

n&* =0, (4.2.4)

It follows that the preferred direction to the sine grating is approximateiy the
direction of the filter’s orientation, n (figure 10).
Consider now a dot travelling with constant speed:

290 & B Qo An-E N, 2 Q). (42.3)

I(x—vt) = I, 3(x—vt). (4.2.5)
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Fieure 10. Dependence of single celis’ directional tuning on stimulus shape. These polar plots
are directional-tuning curves of the responses of a motion-energy cell to translating sinus-
oidal gratings (equation {4.2.2)) and dots (equation (4.2.8}). The plots are such that the cell
response and stimulus direction correspond to the distance from the origin and angle,
respectively. The optimal direction for the grating and the dots moving slowly is identical.
However, when the dots move fast their directional tuning curve becomes bimodal with its
lobes being symmetrical about the grating’s best direction; (—--), grating;; (==}, dot: high
speed ; (.-} dot: low speed.

For simplicity, we give the response of the cells for Which the dot passes through
the centre of their receptive field, and for the time ¢ at which the dot is at this
centre: Aol

3

N2.nQ,0,0)= 5 s
¢

e-(w,)’ (0-80+Q) " (c +of v . (4.2.6)
One can show that for other trajectories and times this section’s conclusions will
be the same. By differentiating this equation with respect to the direction of
motion, one finds that the extrema of N(£2, n,2,} occur when:

(v'n2+2,)v* nQ =0, . (4.2.7)

where v = |v] (cos ¢, sin ¢) and v* = |v|(—sin ¢, cos ¢). By substituting back into
equation (4.2.6), one can determine that these extrema are maxima.

Thus the dot’s and sine’s preferred directions are similar when the dot moves
slowly, but the dot’s tuning is bimodal for high speeds (figure 10). If |v] < |2,/9|,
then only v*-n = 0 satisfies equation (4.2.7), implying that v is in the direction .
However, if o] > |€2,/42], there exist two preferred directions symmetrical about »
satisfying v-nQ+Q, = 0, with v*-n = 0 now determining a minimum.

4.3. Apparent motion

We define facilitation and suppression as positive and negative signs of the
subtraction from an apparent motion response of the sum of the responses to the
individual apparent motion slits, respectively. In other words, facilitation occurs

3 Vol. 239. B
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when one gets more response from the apparent motion than expected from the
responses to the slits alone. And conversely, if suppression occurs one gets less
responge than expected.

Data from directionally selective complex cells in the cat’s primary visual cortex
show facilitation and suppression for the preferred and null directions, respectively
{Emerson et al. 1987b). The suppression appears only if the distance and delay
between the apparent motion slits is sufficiently long.

It was argued (Emerson et al. 1987a) that energy models, but not correlation
models, for the measurement of visual motion (Hassenstein & Reichardt 1956;
van Santen & Sperling 1984) conform with these data.

We confirm that energy models account for these data and suggest a new
property : suppression may occur for all velocities not satisfying the filter’s con-
dition for translations, Qn-v+£, =0, even if the motion is in the preferred
direction. The reason for the model to produce facilitation is the squaring operation
(equation (2.1.4)). Under the correct velocities for facilitation, the positive portions
of the response to one slit tend to occur when the response to the other slit is
positive or small. A similar tendency exists for the negative portions of the
responses. These tendencies lead to facilitation, because the square of the sum of
two numbers of the same sign is larger than the sum of their squares. Similarly,
suppression occurs if the interfering portions of the responses have opposite sign.
The difficulty with these arguments, resolved by our calculations, is that the
situation is often not so clear. Positive responses to a slit can occur during positive
and negative responses to the other slit.

Congider a dot flashed in the image:

I(x,8) = I, 8(x—x,) 8(t—1¢,). (4.3.1)
One can compute this dot’s N:
N(x,t:2,n,0,, 0,0, = Be~&-x)'1o" g=t—t)%o} (4.3.2)
Now, for a two-dot apparent motion we have:
I(x,t) = I,(8(x—x,) 8(—£,) + 8(x — x,) 8(t — ;). (4.3.3)
Algo, in this case we can compute N: |

Nix,t:Q,n,9, 0,0,) = Be~=0" g-t-tn'ol § o=(=x9%0" g=(t-ty%a]

+ 2 e~ (20" g—(t-t)*(20}) g~ Cax-x (20" g=(t=ty /(20D
X co8 (§2m- (x, — x,} + ,(t, —1.))). (4.3.4)

The first two terms on the right-hand side of equation (4.3.4) are the contri-
butions from each dot, and the third term, the residual, is the quantity of interest :

Res(x,t:Q,n,0,) = 2~ =" g=(t-t0"/(20}) o~ (x—x9)"(30" gttty N2}

xcos((2n-v+22,) (¢, —t,)), (4.3.5)
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where v = (x,—x,)/(t;—t,). To know whether the interaction is facilitatory or
suppressive we must consider the sign of Res:

Sgn(Res) = Sgn (cos ((n-v+£2,) (t,—1,))), (4.3.6)

where Sgn(y) =1if y 2 0 and Sgn(y) =—1if y < 0.

There is always a facilitation when the apparent motion fulfills Qn-v+Q, =0
(figure 11). Direct substitution of this condition into equation (4.3.8) yields
Sgn(Res) = 1. :

spatial separation

0
temporal separation

I
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Frours 11. Facilitation and suppression in apparent motions. The figure displays a contour plot
of the subtraction from an apparent motion response of the sum of the responses to the
individual apparent motion alits (equation (4.3.5)). Positivity and negativity are given by
the solid and dotted contours, respectively. The diagonal line represents a cross section of
the translation plane, for which there is always facilitation (positivity). However, for every
other veloolty, including motions in the preferred du-ectlon, it may be possible to detect a
suppression (negativity). The null direction is the easier in which to find suppression; for
thia direction, facilitation may occur if the delay between the slits is small.

However, for every other velocity it may be possible to detect & suppression. If
v is such that Qn-v+£, # 0, then cne can choose ¢,—¢, sufficiently large so that
Sgn(Res) = —1. This condition may be true even for motions in the preferred
direction (figure 11). These preferred-direction suppressions may not always be
observable, as the Gaussians in equation (4.3.5) may reduce significantly the
absolute value of Res.

Suppression is more likely to be observed for the null direction than for other
motion directions (figure 11), as the null direction leads to the largest value of
|Q2n v+ Q,|. Nevertheless, even for the null direction, if ¢, —¢, is small, one observes
facilitation.

In summary, our model seems to account for the cortical cells’ facilitation and
suppression phenomenology, although the model suggests that suppression may .
be observable under wider stimulus conditions than those studied so far.
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5. COMPARISON WITH MT

We now discuss how the new model may account for the detection of velocity
in MT. The results of this section use the complete model, including the outputs of
the motion-energy filters (equation (2.1.4)) and the combination of these outputs
(§2.3). This is different to that in §4, which only required the motion-energy filters.

Movshon ef al. (1985) distinguished between two classes of directionally selective
cells in monkey mT: Component cells and Pattern cells (see also Rodman & Albright
(1989)).

The Component cells respond to the motion direction of single-oriented contours
but not of complex patterns. For these patterns, these cells only respond when an
oriented portion of the patterns moves perpendicularly to the cell’s preferred
orientation. All primary visual cortex cells that are directionally selective and
about 40 % of MT cells appear to belong to this class.

The Pattern cells respond both to the direction of motion of single oriented
contours and of complex patterns. These cells appear to represent about 25% of
Mt cells. The other 35 % of MT cells cannot be clearly classified as either Component
or Pattern cells. Movshon et al. (1985} argue that this ambiguity is mostly due to
the statistical insensitivity of their methods. However, it is possible that other
classes of cell exist.

To distinguish between these cell types, researchers (Movshon el al. 1985;
Rodman & Albright 1989) measured the difference in response to moving sinus-
oidal grating and sinusoidal plaid stimuli. (The latter is the sum of a pair of crossed
sinusoidal gratings.) The Component celis’ directional tuning was bimodal for the
plaids. The optimal directions roughly occurred when the plaid gratings were
perpendicular to the cells’ preferred direction as determined by single gratings. On
the other hand, the optimal direction of the Pattern cells for the plaid were
approximately coincident with that of the single gratings.

We now show that the motion energy filters (equation (2.1.4)) behave like
Component cells, whereas the filters’ combination by one of the methods of §2.3
behave like Pattern cells.

We use plaids that are the superposition of two orthogonal sine wave gratings
travelling with the same velocity v: ‘

I(x—vt) = I,sin (A& - (x—ot)) + I, sin (AE*- (x —of)), B

where A is the gratings’ spatial frequency, and & and &* are the gratings”directions.
The time-averaged response is given by:

Nix,t:2,0,,0,0,) = (I}/4) (67 020" ¢~ @8 gmoiMw-0+ap!
+ 7T MEY" =00 g-ofo-D)-0)")
F(I3/4) (o004 @ 0 oot ¢r+0)®

g AN o0 e—a,'()\(o-g-)—a,)')_ (5.2)

This is a linear combination of Gaussians centred on (2,0,) = (Af, —Av &) =
(—Ag, Av-&) = (AE*, —Av &%) = (—Af*, Av-{*). Because these Gaussians are
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centred on the plane 2-v+ £, = 0, both the Ridge and the Estimation strategies
of §2.3 will yield the true velocity.

Figure 12 plots the directional tuning curve to the plaid (equation (5.1)) of a
Component and a Pattern cell assuming the Ridge strategy of §2.3. The optimal
directions in these tuning curves agree with those recorded in MT (Movshon et al.
1985 ; Rodman & Albright 1989). The directional tuning is sharper for Component
than for Pattern cells coinciding with the sharper tuning in the primary visual
cortex when compared with MT. This raises the possibility that primary visual
cortex cells feed directly into Pattern cells without using the Mt Component cells
as intermediate (like Scheme a of fig. 9 of Rodman & Albright (1989)). Also, the
tuning difference in figure 12 might be reduced by a mutual inhibitory network
implementing a partial winner-take-all mechanism (Yuille & Grzywacz 19895).

Finally, the model also appears to be consistent with the finding that type II
cells in Albright’s classification of Mt cells (Albright 1984) correspond to the
Pattern cells (Rodman & Albright 1989). The property characterizing type II cells
is that their preferred direction for moving spots and preferred orientation for
stationary slits are parallel. Our model accounts for the correspondence between
type I1 and Pattern cells as follows. Because the slits are stationary, they would
activate Pattern cells in MT through motion-energy cells tuned to low temporal
frequencies. The only such cells consistent with a given velocity vector are those
tuned to gratings parallel to it. This is because, these are thé only gratings not
expected to move. Thus the best stationary slits are those whose Fourier

Fraurg 12. The directional tuning curve of the responses to the plaid of a Component, (~——} and
a Pattern (—-) cell. These polar plots have the same convention as in figure 10. The
Component cells respond (equation (4.4.2)) mainly when one of the gratings composing the
plaid moves in parallel to the cell’s preferred direction (to the right). This occurs when the
plaid moves parallel to the dotted lines. The Pattern cells’ responses were simulated by using
the Ridge strategy without a winner-take-all mechanism (§2.3). The directional tuning is
sharper for Component than for Pattern cells, coinciding with the sharper tuning in the
primary visual cortex when compared to mMT. This tuning difference might be reduced by
a mutual inhibitory network implementing a partial winner-take-all mechanism (Yuille &
Grzywacz 1989).
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components are parallel to the Pattern cell’s preferred direction. This explanation
is essentially the same one that was provided by Rodman & Albright (1989).

8. DiscyussIoN

We presented a model, qualitatively consistent with physiology, that postulates
two stages for cortical velocity estimate: the first measuring motion energies
(Adelson & Bergen 1985) from the moving stimulus and the second estimating
velocity from these energies. The first stage might correspond to the primary visual
cortex and the second to Mt (Movshon et al. 1985), but other alternatives are
possible (Rodman & Albright 1989). The intuition for how the second stage
combines the first-stage outputs is similar to that suggested byMcKee et al. (1986).
The model would yield arbitrarily correct velocity if the sampling of spatio-
temporal frequencies by the first stage was arbitrarily dense. Evidence for high-
density measurements for spatial frequencies has been provided (Silverman et al.
1989).

The main ideas behind this model are general and may have applications to
other early visual computations. These ideas are of a fast filtering of information
followed by the combination of the filters’ outputs to compute the relevant visual
parameters. It has been suggested that texture discrimination (Clark ef al. 1987;
Bergen & Adelson 1988; Daugman 1988}, feature detection (Morrone & Burr 1988)
and stereopsis (Sanger 1988; Yeshurun & Schwartz 1987) may follow such a
strategy. _

The model’s second stage computes velocity locally from the motion-energy
distribution across first-stage cells, and thus may explain (see also Adelson (1987);
Fleet & Jepson (1989)) the perhaps related phenomena of motion transparency
(Adelson & Movshon 1982) and discontinuities (Anstis 1970). The computation
uses only motion-energy cells, whose centres of receptive field lie in a single spatial
Jocation. If two different motion fields are adjacent, then a bimodal distribution
of motion energies is generated, implying two velocities (figure 13a). Bimodal
distributions would also oceur in motion transparency (figure 13b). To detect two
velocities from these bimodal distributions, the Ridge strategy (§2.3) might use a
local winner-take-all mechanism. However, it is possible that the brain uses a global
winner-take-all strategy. In this case, with no winner in MT, another visual path-
way might compute velocities directly from the primary visual cortex. An alterna-
tive is that with a global winner-take-all mechanism, the winners would switch
transiently between themselves as the image changes leading to the perception of
transparency. Schemes that integrate velocity signals (Hildreth 1984; Yuille &
Grzywacz 19884, b; Bulthoff e al. 1989 ; Grzywacz et al. 1989) may have to do so
by segregating velocities that differ locally.

Why do we say that the model works locally despite the theorems’ assumption
that the velocity is constant over the whole image ? The reason is that in practice
this assumption can be greatly relaxed. Because the cells have essentially a limited
spatio-temporal range, determined by o and o, the velocity only needs to be
constant over this range. Thus the model provides good velocity etimate almost
everywhere for classes of motion, such as rotation or expansion, that can be locally
approximated as translation. '




Model for cortical estimate of velocity 153

SiLibdddLLaarrrrrrrrrrYY

¥ | IARRRRRRS]
(@) | { freveteee
ol l ARRRRRRAR)

lillHLHLHTTH\TTTTTTTT

i/
IRERNR NN SRRSO NN NS IR

IS IR RN ALY
GTITLITLTy TLTLTLTLY
Lritininy TLUTLTLTLY .

NSNS IR S NENR SR IR SR IR N

Fiouzrs 13. Transparency and motion discontinuties. (a) Two adjacent fields of dots move in
opposite directions, thus forming a boundary of motion discontinuity. () Two super-
imposed fields of dots move in opposite directions, thus forming a region of motion
trangparency. The diameters of the circles represent the receptive field sizes of motion-
energy cells. If such cells are near the discontinuity or are seeing motion transparency, then
the motion-energy distribution for these cells lie around two planes (cf. figure 3b). Other-
wise, if there is only one motion field on these cells’ receptive fields, then the motion energies
lie around a single plane. To detect two velocities from the above bimodal distributions, the
Ridge strategy (§2.3) might use & local winner-take-all mechanism. Schemes that integrate
velocity signals may have to do so by segregating velocities that differ locally.

We will now diseuss two assumptions of the model’s first stage that are probably
incorrect in physiological details: Gabor filtering (equation (2.1.1)) and filter’s
output squared as the cells’ responses (equation (2.1.4)). This incorrectness follows
from the modelling of cell responses by simple mathematics instead of realistic
biophysics (Grzywacz & Poggio 198¢9). However, our main idea, the combination
of motion-energy filters, seems to be conveniently modelled by this paper's
methods.

The Gabor function is, strictly speaking, the only filter for which we can
guarantee that the extrema of responses in the cells’ optimal-frequency space lie
on a ridge (unpublished calculations). This is due to the fact that the Gaussian is
the only separable rotationally invariant function. If, however, the filters are
gimilar, but not exactly, like Gabors, then we expect the results of §2.2 to be true
most of the time. This expectation is confirmed by the velocity computation in
real images with filters that were built by a self-organizing developmental model,
and that only approximately resemble Gabor functions (Yuille & Cohen 198g).

To what extent are Gabor functions good models of the properties of primary
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visual cortex cells ? Some researchers suggest that these functions are good models
of the receptive-field structure in cat (Jones & Palmer 1987). Also, physiologically
plausible models that resemble spatio-temporal Gabor filters have been proposed
(Adelson & Bergen 198s). However, there are at least three problems with Gabor
models. First, they predict that the cells’ spatial tuning curves follow a Gaussian
function (equation (4.1.2)). However, the data show that these tuning curves
follow a log-normal function (Gaussian when plotted on a logarithmic scale
(Gaddum 1945 ; Holub & Morton-Gibson 1981)), typically with more than 85% of
the area under the curves being for frequencies higher than optimal. Such log-
normal behaviour might be significant, as it would naturally provide the scaling
properties necessary for good velocity estimates (figure 6). If tuning curves are log-
normal, the frequency range of a cell is proportional to its optimal frequency. An
alternative to Gabor models, which would have the same scaling property, are
Wavelet models (Grossmann & Morlet 1984; Mallat 1988). S8econdly, the Gabor-
filter temporal part is non-causal, that is, because it is not zero for negative times,
it uses future information in its computations. A filter, whose temporal tuning
ourve is log-normal, as in cortical cells (Holub & Morton-Gibson 1981), might
correct this problem (typically more than 99% of this tuning curve occurs for
frequencies higher than optimal). On the other hand, the non-causality may also
imply that velocity computation is not ‘on-line’; a delay that is consistent with
the temporal integration necessary to estimate velocity accurately (Nakayama &
Tyler 1981 ; Regan & Beverly 1984; McKee & Welch 1985). Thirdly, the use of a
Gabor filter implies an initially linear mechanism, which is not always supported
by experiments (Emerson & Citron 1988; Reid & Shapley 1988). One neural
mechanism that destroys the linearity of the cells is the ON-OFF rectification.
Another neural nonlinearity that may have a role in velocity computations is
shunting inhibition, which seems to account for retinal directional selectivity
(Torre & Poggio 1978; Marchiafava 1979; Amthor & Grzywacz 1990).

It is improbable that the cells’ responses correspond to the square of the filters’
output (equation {2.1.4)), as squaring operations may not be part of the neural
‘vocabulary’ (Grzywacz & Koch 1987; Grzywacz & Poggio 1989). However, in our
model, this operation underlies the facilitation in preferred-direction apparent
motions (figure 11). Thus, in physiologically realistic models, the squaring oper-
ation must be substituted by other supralinear operations (relations with a positive
second derivative).

Our final argument is that biological motion perception may use at least three
stages; two for velocity estimation and at least one more to deal with coherent
motion {Yuille & Grzywacz 19884, b). The first two stages are similar to those
proposed by Adelson & Movshon (1982) and Movshon ef al. (1985}, although we
suggest a different role for these stages than they do. Direct psychophysical
evidence for two stages in the computation of velocity has recently been given
(Welch 1989). Interestingly, in theory, velocity estimation requires only one stage
(Verri et al. 1989).

We suggest that the primary visual cortex and MT represent two stages needed
to estimate velocity, and argue, contrary to Movshon et al. (1985), that MT is not
concerned with the aperture problem. To do so, we first define what we mean by
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the aperture problem. It is the imposeibility to measure locally, velocity com-
ponents other than that normal to the luminance gradient (Marr & Ullman 1981).
Movshon ei al. postulate that the role of the primary visual cortex is to analyse
motions of one-dimensional patterns. These researchers also advanece the idea that
MT solves the resulting aperture problem. In particular, they propose a model
assuming that primary visual cortex cells compute the velocity normal to one-
dimensional patterns. This proposition is consistent with the finding that primary
visual cortex cells are ‘velocity selective’ for moving bars (Movshon 1975; Orban
et al. 1986; Baker 1988). As a curiosity, our model predicte this selectivity (un-
published calculations). However, the receptive-field size of primary visual cortex
cells is typically larger than regions of the visual world where significant curvature
and texture exist. Thus these cells have to deal with two-dimensional patterns.
Under these conditions, the assumptions of Movshon et al. lead to incorrect
estimates of velocity. We suggest that the primary visual cortex does not assume
a one-dimensional visual world. Thus we argue that the role of MT is to compute
local velocity without having to deal with the aperture problem. It is tempting
to identify the speed-selective cells found in MT (Newsome et al. 1983) with its
pattern cells (Movshon et al. 1985; Rodman & Albright 1989). A problem with this
identification is that studies with sinusoidal gratings suggest that it applies only
to a small percentage of MT cells (J. A. Movshon, personal communication). How-
ever, one must be careful in interpreting results from sinusoidal-grating experi-
ments, as they may, for two reasons, represent poor stimuli for the Pattern cells.
The first reason is that sinusoidal gratings are one-dimensional and the Pattern
cells may not be designed to solve the aperture problem in the whole (§2.3). The
second reason is that sinusoidal gratings may stimulate effectively very few of the
motion-energy cells, leading to signal-to-noise problems. The facilitatory inter-
action between component cells (J. A. Movshon, personal communication ; Ferrera
& Wilson 1987) emphasizes that a good stimulus should probably comprise several
Fourier components.

At least one more motion-processing stage is needed to deal with another
problem, which is related to the aperture problem. This new problem occurs when
objects larger than the receptive field size of MT cells move. In this case, the cells
may compute different velocities for different portions of these objects. Never-
theless, it is often important to assign a global motion to the objects (Hildreth
1984; Yuille & Grzywacz 19884, b). The solution for this coherence problem
requires a motion-processing stage, which might occur in later cortical areas
{Tanaka et al. 1986 ; Saito ¢f al. 1986), which perform spatial integration over large
receptive fields.
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ArrExDIX 1 ;

In this appendix, we give a proof for Theorem 2. We first calculate f{x,t), the
spatio-temporal convolution of the image with the complex filter in 2.1.1. The
response of our nonlinear filter ¥ is then given by the relation N(x,¢:Q2,n,Q,,0,0,)
= |fix,!)|®. By using the convolution theorem we find:

fix,6:2.n0, 00)= JF(m, w;:2,n,92, 0,0)](w 0)e®* e dodw,
(A 1.1)

where I{o, w,) is the Fourier transform of the image I(x, t). If the image is moving
with constant velocity v, then:

To,w,) = 2niév-o+0,)go), (A1.2)

where g(w) is independent of w, and & is the Dirac delta function. Substituting
equations (2.1.5) and (A 1.2) into equation (A 1.1) (by using Cartesian coordinates
2=Q0n=(2,4,) yields:

fx,6:2,9,,0,0)= J.e"""‘”"’”e“""”""'""mg(m) gl de (A 1.3)

[

From equation (A 1.3) we see that NV iz the sum of the squares of two functlons h
and f, (the real and imaginary parts of f}, of the form:

filx,t:2.Q, 0,0,) = Je““‘“"”’*e“""’*"t"“f’zgi(x, i:0,0,0,)de, (A14)
where the g, are the real and imaginary parts of e~ (=),

Hence the results will hold for N if they hold for f, and f,. By using the
summation convention (ab, =X, a,b, and a Hyb =X 3N a H,b) on
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repeated indices %, , &, I, p, but not on ¢, the argument of the exponent in the
integrand of equation (A 1.4) can be written as:

(—1/2) (2 —) o +(2,+v @) o})

= (—1/2) (w; 0y(8 0 +v,v,08) +2(2, 0 v, — 2 o) 0+ 02, 2, + D 7).

(A 1.5)
We can complete the square and write it in the form: -

(—1/2) (Aylw,+ A5} By) (w0, + A B)) — B Ay B+ D), (A'1.8)

where A, = 8,0%+v,v,0}, B, = Q,0}v,—0*Q, and @ = 0*Q,Q2,+ 0} K}.
The last two terms on the right hand side of equation (A 1.8} are independent
of @. Hence we can write: :

a _ -
filx,t:2,Q,,0,0,) = e~ @ Bxdun B/t J’e“ﬂ"ﬂ"‘*‘# B erdy B g (% t: @) deo,

. : (ALT)
By calculating the inverse of 4,
‘ 1 ‘
44 = '03&1 —[o}/ (oo + o} v v))] v, vy, (A 1.8)
we find that .
®—B A B; = [(0f 0%)/ (0% + o} v*)] (R, 4 82, v,)*. (AL9)

The integral term in equation (A 1.7) defines the function pi(x,t: 2, 0f v—o*Q).
It corresponds to convolving g, with a function of (22, ¢} v—0?0).
Defining p = p}+p} proves the theorem.

APPEXDIX 2

In this appendix, we give a proof for Theorem 3. These results can be derived from
equation (A 1.6). We find by using equation (A 1.8):

- - v v,0} o, +v- D)o
Aﬁ(gf+AkilBk) (QJ+AHIBI) = 0" (J‘j"i' io_z ‘)(Qi'—'(ﬂ"l"t(o_;-}.—om'i)
o382, +v Qv
—
x (9, o+t o o) ) (A 2.10)

We now argue that we can approximate 4,(Q,+ 4} B;) (£2,+ 4;;' B)) by 0%(2,—w,)
(92, — ;). From equation (A 1.7), we see that the response of the filter decays
exponentially with & — B, A7 B;. If we use the approximation v* o} € o® we can see
that the ratio of the term [03(2,+ v 2)v,/(0® + o} v*)] to £, is much smaller than
v/ (®@—B, A B). Thus this term will only be important when the output of the
filter is small, and hence we can set {2,—w,+ [0}, +v - D)v,/(c*+oiv?)]} =
(82, —w,). Again, by using the approximation v*¢} <€ o we can set (3, + (v, v, 0(/0*))
& 8. Thus we define r(f2) = exp (~(6*/2) (,— £2,} (w;— £2;)) and the result follows.
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Now we oslonlate the am&gajmpome of motzon-energy ﬁ.lters to movmg sine o
wave gratings. _
The equation for the gmtmga is:

I(x—ut) = I am(An (x—vt)) . o (A31) -
Thm has Founer tranaform o -
T@,0) = 2miL, 80+ 0+a,) (1/2) (3@-n—A) 8- n+2)d@n%). (A33)

Substituting equation (A 3. 2) into equa.twn (A 1.1) and integrating: mth reupeot 0
(@, w,), we obt&m

fx,t:2,n0,0,0)= Il o~ (=018 g—Gn-0+0) "o}/ g-fAn- (x-e) |
o I, e oGOt olia glim e-et) (A 3 3
Thus the response is: : N | _
N(x,t:0,n, ﬂ,,a, 0,) = om@-2'e’ g-nety'el
+he Pt gino-0) d—zz'e-ﬂ'w%’ = (0 ->'+a'>dm(2aa (x-um (A 3. 4)




