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Abstract

In motion perception, there are a number of important phenomena involving coherence. Examples in-
clude motion capture and motion cooperativity. We propose a theoretical model, called the motion
coherence theory, that gives a possible explanation for these effects [1,2]. In this framework, the aperture
problem can also be thought of as a problem of coherence and given a similar explanation. We propose
the concept of a velocity field defined everywhere in the image, even where there is no explicit motion in-
formation available. Through a cost function, the model imposes smoothness on the velocity field in a
more general way than in previous theories. In this paper, we provide a detailed theoretical analysis of the
motion coherence theory. We discuss its relations with previous theories and show that some of them are
approximations to it. A second paper [3] provides extensions for temporal coherence and comparisons to
psychophysical phenomena. The theory applies to both short-range and long-range motion. It places
them in the same computational framework and provides a way to define interactions between the

tWO processes.

1 Introduction

When humans see motion, the perception of how
one image feature moves depends on the move-
ment of other features. In particular, the Ges-
taltists proposed the law of shared common fate.
In it, features tend to be perceived as moving
coherently [4]. This law is supported by recent
psychophysical findings su¢h as motion capture
[5] and the cooperativity of the motion system [6,
7). Furthermore, these percepts of coherent mo-
tion can be justified on two computational
grounds. First, if two features are close, then they
probably belong to the same object, and thus tend
to move together. (Work by Yuille and Ullman [8]
suggests that there is a statistical relation between
the smoothness of motion in the image plane and
the rigidity of the object in three-dimensional
space.) Second, the measurement of local motion
may be inaccurate and an integration of motion
information over large areas may help to improve
the performance.

These coherent motion percepts are not fully
accounted for by the extant theories of visual mo-
tion. These theories are limited, since they do not
integrate local measurements (see {9]. for exam-
ple), they integrate motion only when the
measurements are dense (forexample. {10. 11]).or
they do not reward coherence (for example.
[12)).

In this paper, we propose an alternative theory
to accoutit for the perception of coherent motion.
We call this theory the motion coherence theory {1.
2]. it is shown that, without further assumptions,
the theory provides a qualitative solution for the
aperture problem [13], which can also be con-
sidered as a problem of coherence [14]. Moreover.
the theory agrees with experiments by Nakayama

- and Silverman [15, 16] that investigate variations

of the aperture problem, and which are not easily
explained by current theories.

(It has been suggested that there are two pro-
cesses used by humans for motion measure-
ment—see [17-19]. The first, the short-range pro-
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cess, deals with motions that span short distances
and times. The second. the long-range process,
deals with long distances and times. However. the
determination of whether a motion is short or
lo}r;g depends complexly on the image—see [20-
23]

This paper is mainly theoretical. It describes
the theory for long and short-range motion.
proves a number of theoretical results. and dis-
cusses the relationship with other theories. A sec-
ond paper [3] compares the theory to psychophy-
sical experiments in more detail and provides an
extension to the theory that includes temporal
coherence.

In its present format, this theory does not incor-
porate mechanisms for motion segmentation and
temporal integration of motion information.
Theoretical extensions to include motion inertia
are described in [3] and are related to psycho-
physical experiments by [24. 25]. These issues
are discussed later in this paper.

This paper’s organization is as follows. The
next section describes the two stages of the theory.
namely, the local motion measurements and their
spatial integration. Also. the section explains that
this integration, that is. the smoothing, is con-
strained if the problems solved by the theory are
to be well posed and its output spatiaily restricted.
Then. in section 3. we present three short-range
motion examples of the theory: motions of
isolated features and contours, and optical flows.
[n the same section. other strategies for short-
range motion measurement are discussed. Sec-
tion 4 discusses how the motion coherence theory
deals with long-range motions and compares itto
Ullman's minimal mapping theory [12]. Next. in
section 5. the combination of different forms of
motion measurement is discussed. This suggests a
way to combine short- and long-range processes.
The following section describes the motion
coherence theory's relevance for two imporiant
psychophysical phenomena: the solution for the
aperture problem and motion capture. Section 7
sketches extensions of the theory: and finally. in
section 8. we discuss our conclusions.

2 The Theory

The theory divides the computation of motion
into two stages: the measuring and the smoothing

stages. In the measuring stage, motion is meas-
ured as in any of the previous theories of visual
motion and some restrictions are put on the
velocity field. For éxample, in Hildreth’s work on
short-range motion [11], the normal component
of the velocity on a contour is measured and the
tangential component is undetermined. In an ex-
ample of long-range motion. Ullman’s cover prin-
ciple [12] puts a constraint on the possible
velocities of long-range motion. The measured
velocity might also be computed by spatiotem-
poral filters or by a correlation model {9.26-
30,56], see section 3.3. (For an alternative ap-
proach see [31]). In the smoothing stage, velocity
field is constructed over the entire visual field:
even where no estimates of motion have been
made. It is postulated that this velocity field
obeys, as strictly as possible, the restrictions
found in the measuring stage, and simultaneous-
ly, is as smooth as possible. These requirements
force the velocities of neighboring features to be
similar, while “respecting” the restrictions of the
measuring stage.

We now present the theory formally. Let the
velocity measurement obtained by the measuring
stage at point 7;be M(U)), where U is the true image
velocity. The measurement operator M will de-
pend on the measurements. If for example,
isolated point-like features undergo short-range
motion, then both their velocity components may
be measured. For contour motion, on the other
hand. the measurements may correspond to the
normal component of the velocity field along
edge contours. Section 3 discusses several exam-
ples of the operator- M for short-range motions.
For long-range correspondence, the measure-
ments are more complicated and are described in
section 4.

The motion coherence theory proposes that the
smoothing stage constructs a velocity field. V(F).
such that the following functional is minimized
for both components of v

{(7(7), 0) = LIMG(F)) - MO’
+ A YD) (1)
m =0 .
where A > 0 and c,, > 0 are constants. The deriva-
tive operator (D) is a scalar operator if mis even

and a vector operator if m is odd. More pre-
cisely
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(D) = V¥ (22)
(D2m+l"‘;) = e(vlm;) (Zb)

where ¥ is the gradient operator and V is the
Laplacian operator. Smoothness operators of this
type correspond to Tikhonov stabilizers [32-34].
The sum of the first term of the right-hand side of
equation (1) is taken over all points where explicit
motion information is available.

The precise form of the smoothness operator is
important. It determines the form of the interac-
tions between measurements in different parts of
the visual field and, in particular, the way these
interactions fall off with distance.

2.1 The Form of the Smoothness Function

The parameter A sets the strength of the smooth-
ing and the ¢,, (¢,, > 0) determine its form. There
are many possible forms for the smoothing func-
tion. In this section, we discuss several conditions
that this function must satisfy. We then argue that
a good choice is a smoothness function that yields
an interaction with the spatial behavior of a
Gaussian function.

We impose two criteria on our smoothness
function: (i) It must impose enough smoothness
to make the problem well posed, and (i) the in-
teractions between different measurements must
fall off to zero at large distances. (See the Discus-
sion section for the case where boundary con-
ditions are used.)

We now state theorems that give necessary and
sufficient conditions for (i) and (ii).

THEoREM I. A necessary and sufficient condition for (i)
is that derivatives of higher than first order exist in the
smoothing operator.

Proof This theorem is proved in [35}]. Intuitively
the amount of smoothness required depends on
the dimensionality of the space and the dimen-
sionality of the data. For isolated data points
(such as features) in two dimensions an operator
with only first-order derivatives does not supply
enough smoothness. This would correspond to
fitting a membrane surface to isolated data
points. The human visual system. however, ob-

tains coherent percepts even for discrete fea-
tures.

TreorEM 2. A necessary and sufficient condition for
the interaction to fall faster than 1/r. whereris the dis-
tance from a motion measurement site, is that ¢, > 0.

Proof. This theorem is proven in appendix A. (In
practice, if ¢, = 0, the interaction does not fall at
all. Also. for the total contribution of a data point
to the computed velocity field to be finite, it is
critical that the interaction falls faster than 1/r.)

We can deduce a corollary

CoROLLARY. Smoothing operators involving only first-
order derivatives do not satisfy either of the conditions
(i) and (ii).

Thi“; corollary is important, since previous
theories that integrated motion over space [10, 11]
used a similar mathematical structure as in equa-
tion (1), with only first-order derivatives (al-
though Horn and Schunck suggested the possi-
bility of using Laplacians). Thus, any attemplts to
extend these theories directly to deal with sparse
data will encounter difficulties. It can also be
shown, see appendix B, that these difficulties will
start to occur even for dense data.

The two theorems say that to satisty our criteria,
the smoothing operator must have positive ¢, and
one or more derivatives higher than first order.

For this paper. we choose the smoothing so that
the interaction is a Gaussian. This form of in-
teraction was chosen for four reasons: First, it
meets the criteria above; second, it generates
analytic solutions; third, it has a natural spatial
scale: and fourth, it may be an optimal smoothing
filter {36-38]. Moreover, variations of the higher-
order terms. ¢, for m > 2, seem to have little effect
on the interaction, which thus usually resembles
a Gaussian {39]. To obtain a Gaussian interaction
we setc,, = 6*"/(m!2")(see appendix A. This result
has also been obtained by Shulman and
Aloimonos—~private communication).

Smoothing has been traditionally justified in
vision as a method for dealing with noise or filling

e ot - 7 i < —»J
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in sparse data. We would like to stress that
smoothing also gives rise 10 computational ef-
ficiency. If computation is done at a coarse scale,
then the interpolated resultcan be used to reduce
significantly the complexity of calculation at
finer scales.

3 Examples of Short-Range Motions

In this section, we start with three examples of the
theory's predictions for short-range motions. The
first is given in section 3.1 and deals with motions
of isolated features. This example is the simplest,
because isolated features may be tracked and
their motion determined with precision. Never-
theless. this is not a trivial example, since the
phenomenon of motion cooperativity [6,7] shows
that these motions interact.

Section 3.2 gives two other short-range moticn
examples: motions of contours and optical flows.
For the former, we compare the predictions of the
motion coherence theory with a computational
theory proposed by Hildreth [11]. For the latter, a
comparison is made with a computational theory
proposed by Horn and Schunck [10].

Finally. section 3.3 discusses other, more
biological, examples of how short-range motion
may be measured.

3.1 Isolated Features and Motion Cooperativity

This section deals with the simplest form of mo-
tion: that of isolated features undergoing short-
range motions. The example that we present here
shows that the motion coherence theory may ac-
count for the cooperativity of the motion system
(6. 71. This cooperativity is demonstrated by an
experiment as follows. The stimulus consists of
random-dot patterns in which the dots make a
random walk, with their direction of motion at
each step taken from some distribution. If there is
a uniform distribution over all directions, one
sees dynamic noise. However, only a slight bias of
the range of motion directions may lead to a per-
cept of global motion in the direction of the bias.
The theory predicts this behavior, because the

small variance of the constructed velocity field
may enable the mean motion to be detected.

These experiments are examples of short-range
motion. In them, each dot can be tracked and
there is no correspondence problem. We assume
that in this case, the velocity measurements are
the velocities of the dots. Suppose that the dots are
at points 7, with velocities U.. The motion coher-
ence theory suggests minimizing

EGH.0) = Z[(V(ﬁ)) - (D)
+2f ¥ ey O

Then, it is shown in appendix C that the solution
of (3), obtained by standard calculus of varia-
tions, has the form

- B —(F =)

= i it Ui 4
e Z‘ 2na? EXP T g )
wherg the B; are solutions of

(;\-80 + Gt‘j)ﬁj'-: U.‘ (3
where

__ ! ~(F, = 7’
G 2no’ EXP T (6)

The solution will depend on the valuesofcand A
To understand these dependencies, we took two
approaches. First, simulations were made of mo-
tion cooperativity examples, by solving equation
(5) with fixed values of A and changing values of o
(figure 1), and aiso, with fixed o and changing A
(figure 2). Second, we performed analytical
calculations with a simplified version of the mo-
tion cooperativity paradigms.

If we fix A (figure 1) and make o large, then the
magnitude of the velocity vectors in the construct-
ed field is small. This is as if the interactions drag
empty space, which slows the motions down. On
the other limit, that is, for small o, there is no in-
teraction and the constructed field coincides with
the data in the measurement sites. However, over
a large intermediate range of ¢. the solution is
close to the data bias.

If o is fixed (figure 2) and A is large, the con-
structed field is again small. This is due to thecgof
equation (3), which enforces the interactions’
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Fig. I, Motion cooperativity and the spatial extent of the in-
teractions. One hundred dots were randomly placed.inside a
square region of unit sides: the dot positions are indicated by
the little solid squares. Each of these dots was assumed to be
moving. The horizontal components of their velocity were ob-
tained from a homogeneous random distribution whose
values ranged from — | to 1. The vertical components had the
same distribution plus a constant bias upward of 0.25. The
dots’ velocities are not shown. but are close to those shown in
the upper left panel. The figure shows the velocity field com-
puted by the motion coherence theory by minimizing equa-

locality and leads to small velocities. On the other
hand. if A is small, the solution is noisy, because
with little smoothing the problem of minimizing
equation (3) becomes ill-conditioned. Once again,
for a large intermediate range of A, a solution that
is close to the data bias is obtained. We also
verified that these close-to-bias solutions are
maintained if o and A are varied simultaneously,

tion (3) with fixed A and six values of 5. The computed field is
shown as lines attached to litle circles positioned in a grid.
(However, the solution is continuous, because it is computed
analytically as in equation {4); the grid is shown for purposes
of illustration.) For smal 6, no interactions occur and the out-
put is similar to the input. On the other hand. for large o. the
computed motion is small due to interactions with empty
space. However. in a wide range of 0. the computed field atthe
position of the dots is close to the 0.25 bias. The output
coherence in this range is similar to the psychophysical
phenomenon of motion cooperativity 6. 7

-

provided that they are in their correct range.

We analyzed a simplified version of the motion
cooperativity paradigms. In this version, the dots
are randomly and homogeneously distributed all
over the space, that is, they are not constrained to
a small region as in figures 1 and 2. Also, this
analysis assumes that the density of the dots, p. is
high (pna? > 1) such that they strongly interact.
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Fig. 2. Motion cooperativity and smoothness. This figure is
identical to figure 1, except that this time we fixed o and varied
A For small A, the computed field is noisy. because with little
smoothing the problem of minimizing equation (3) becomes
ill-conditioned. However. if A is large, the motion is small. This

The dots’ velocity fields are distributed with a
given mean and standard deviation. In appendix
C, we show how to minimize (3) given these
assumptions. In particular, we analyze how the
mean and the variance of the output velocity field
depend on the statistics of the input and its dot
density. We find that the mean velocity of the out-

put is
-\ _ p<ﬂi>
=35 )

Thus, the constructed field’s mean velocity is
smaller than the input’s mean. But if A is suf-
ficiently small as compared to the dot density,
then these means are arbitrarily close. (This pro-

is due to the ¢, of equation (3) which enforces the interactions’
locality and leads to small velocities. Once again. for a large
intermediate range of A a solution that is close to the input's
bias is obtained.

vides a first guiding rule for the choice of L in a
given computation.) This equation is consistent
with the high A limit of figure 2 but not with the
high o timit of figure 1. The discrepancy results
because, in this figure, the features were restricted
to a small region and the large o led to interac-
tions with empty space.

The dependence of the output variance,
Var(v), on the statistics of the input is:

- 1
Var(v) = 2—,1;5;)

(o2 (232)- 2@ ®

, .
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This equation confirms the findings of figures !
and 2. Not surprisingly the output variance falls
with smoothing, A, and the range of interactions,
a. Also, the variance increases unbounded as the
smoothing decreases. Unfortunately, the limit of
small & is not valid in this equation due to the
assumption pnc® 3> 1, which was used in the
derivation. The dependence of the output vari-
ance on dot density is weak, but it should be
detectable experimentally.

Our model may need to be modified to estimate
dynamically (adaptation} A and o from the image
by a process that decides how much smoothing is
necessary and how wide the range of interaction
should be. This adaptation may be fooled in ex-
periments by quick changes of dot density.

3.2 Relations with the Theories of Hildreth, and Horn
and Schunck

We now discuss how the theory compares to two
previous theories for short-range motion: one
that deals with contour motions {11] and another
that deals with optical flow [10].

Hildreth assumes that contours have been ex-
tracted from the image by a previous process, for
example, by edge detection. In this case, the
velocity information is known only along a con-
tour. Moreover, cnly the normal component of
the velocity field can be measured directly
without further assumptions. This is an example
of the well-known aperture problem [13], which
will be discussed further in section 5. The aper-
ture problem is defined by saying that local
measurements of the velocity field on a contour
cannot determine the velocity field. Hildreth pro-
poses determining the velocity field by minimiz-
ing an energy function defined on the contour
C:

Eq¥(s) = [ [F()] - 7i(s) = u(s)]?

+ l—[‘ Bv(s) az(ss) ©)

with respect to v(s), where #i(s) is the normal vector
to the curve and u(s) is the measured normal
velocity field as functions of the arc length s. In
this formulation the velocity is only smoothed
along the contour.

The motion coherence theory can also deal
with contour motion. The measurement of the
velocity field is the component of velocity perpen-

dicular to the contour MfV(x)] = ¥(X) + A(X). The
~theory then gives
E[F()} = [[FF) - 7(F) - u(®)?
+Af Zoc,,upmv)2 (10)

where the first integral is taken along the contour
C and the second integral is over all space. The
motion coherence theory allows for the motions
on nearby objects to affect the perception of the
motion on the contour, an effect demonstrated by
Nakayama and Silverman {15, 16]. This will be
discussed in section 5.

Hom and Schunck [10] consider measuring
motion directly from the intensity field. Thus, an
image can be considered as a function, /(x #), and
points are assumed to have the same intensity
over time. If the velocity field is taken to be v(x)
this gives the constraint

- ol '

vI-v(x) = 3 (1)
where VI is the gradient of the image intensity. -
Note that again only one component of the
velocity field is available, namely, the component
in the direction of the image gradient. Hom and
Schunck proposed minimizing a function

E y[v(X)] = '['[v;.;(k-)_'_ %{_]2
+ A_J‘ VH(X) - V¥ (X) (12)

with respect to %X), where the integrals are taken
over space.

The motion coherence theory general:zes
Horn and-Schunk’s method as follows:

= J'[VI v(x) + %]

+Af fc,,,(pmv)l (13)

m =0

E[V(x))

3.3 Motion Measurement. Correlation, and
Spatiotemporal Filters

In the theory, as described in the last section, we
have been assuming simple types of motion
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measurement. We have assumed that the normal
components of the velocity field, and spatial and
temporal derivatives, can be measured locally
and instantaneously for edges and images respec-
tively. Since a camera, or an eye, takes time to cap-
ture the intensity of an image, this will not always
be true; and if the image is changing quickly, mo-
tion blurring will result, A second problem arises
for noisy images: the local measurements of the
velocity field may be very noisy.

Two alternative ways to reduce the severity of
these problems are to use spatiotempora! filters
either to look for correlations of the image over
space and time or to measure motion energy [9].
There have been a large number of theories for
short-range motion based on these approaches [9,
26-30, 56]. These theories assume that motion is
constant and in a straight line over the space-time
support of the filters. Thus, they provide an im-
plicit solution to the aperture problem, although
they can only summate data over the range of the
filter. These theories emphasize time and the use
of many semi-independent channels. (Recently,
we proposed a complete theory to combine the in-
formation from the different channels [56]). The
concept of different channels allows for simple
explanations of transparency effects {56]. A pre-
sent disadvantage is the limit on spatiotemporal
interaction given by the size of the filter.

In any case, methods of this type could be used
to make more accurate estimates as input for the
motion coherence theory.

4 The Theory for Long-Range Motion

For long-range correspondence, the theory be-
comes more complicated. For the short-range
motion described in previous sections, one com-
ponent of the velocity field was always known, or
could be directly measured. However, in the long-
range case, we have only the restriction that
features should correspond. Note that if two
features correspond, then a velocity vector can be
assigned at the position of the first feature based
on the difference in spatial positions of the
features and the time between frames. Thus for ¥
features we have A! possible matches between
frames corresponding to N!' possible velocity

assignments at the features. In the motion
coherence theory, some assignments will corre-
spond to smoother velocity fields than others. The
matching between the features is found by requir-
ing the velocity field to be smooth. The smoothing
and the correspondence are done simultaneously
(figure 3).

To make this precise, suppose we have N features
in the two frames at positions X, in the first frame
and X, in the second frame. We define a set of
binary matching elements V,,, where V,, = 1 if the
ith feature in the first frame is matched to the ath
feature in the second frame, and is 0 otherwise.
The constraints on the velocity field can be ex-
pressed by a term

Epur = 2 ViulF(F) = (F, = 2|2 (14)

where we have normalized the time difference be-
tween frames to be unity. If V;, = 1, then the fea-
ture atx; in the first frame travels to feature ¥, in
the second; and therefore it corresponds to a
velocity of X, — X; (with the time normalization).
The velocity field at x;is therefore constrained by
this value. If V,, = 0, then the features are un-
matched and no contribution is made to the en-
ergy. To obtain the full energy function we add a
smoothing term for the velocity field as before
to obtain

E(V,ob(®)] = X Vi [ux) ~ Gy — )’

&
+Af 2 ca(D"FY (15)
m =0

We minimize this function over V, and o(x)
simultaneously. Thus, the smoothness require-
ment directly affects the matching in this case.
The V,, must be constrained so that features
typically make exactly one match. There are two
possible ways to do this: To use the cover princi-
ple [12] and require that all features have at least
one match, or to incorporate a cost in the energy
function to bias against too many or too few
matches, for example E, = 3 (O, V, — 1) +
343, Vi, = 1)? [40}. The latter may be more con-
sistent with psychophysics, since there are situa-
tions in which the cover principle is violated (for
example, in the splitting and fusion phenomena
see [12, 21])
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Fig. 3. The theory for long-range motion. Three features un-
derwent an apparent motion in the downward and rightward
direction. The positions of the features in the firstand second
frames of the motion are indicated by the squares and
triangles respectively. This motion gencrates a correspond-
ence problem: To which feature of the first rame does a given
feature in the second frame correspond? If one imposes a one-
to-one match, there are six ways in which the features could

4.1 The Comparison with Minimal Mapping

We now show that the energy function can be
transformed into a form that includes the mini-
mal mapping theory [12] as a limiting case. This is
desirable, since it is known that minimal map-
ping theory agrees with a reasonable number of
perceptual experiments, and it is plausible that
the motion coherence theory will give similar pre-
dictions in these cases. There will be situations (1-
3], however, involving motion capture for which
the motion coherence theory will give different
predictions. This is because the minimal map-

correspond; these are indicated in the six panels. Foreach cor-
respondence the velocity field that minimizes equation (15)
was found and displayed in a grid as in figure 1. The motion
coherence theory suggests that the correspondence that jeads
to the deepest of these minima is what the visual system
adopts. In this figure, the adopted correspondence is the one
in the upper left panel, which is also the smoothest.

ping theory does not encourage coherence as
strongly as the motion coherence theory. We per-
formed psychophysical experiments [3] that were
consistent with the motion coherence theory and
inconsistent with minimal mapping.

THEOREM. For long-range motions, for which the num-
ber of features over time is constant, the motion
coherence theory with the cover principle is equivalent
to minimizing a cost function

E(V.) = AQ Vi did(A8; + Gy)™'

(g Voids)



164  YUILLE AND GRZYWACZ

with respect to the V,, whered,, = | F. = ¥, |. This cost

Sunction is similar to the square of the cost function for
minimal mapping, E (V) = } ., V., d,. These cost
Junctions have the same minima in the limits 6 —» 0
and A — o,

Proof The key observation is that E{V,, 6(X)) is
quadratic in 0(x). The Euler-Lagrange equa-
tions for B(x) will, therefore, be linear and can be
solved for as a function of V. We now express
E, (V) in terms of the V, only.

We first note that the x and y components of the
velocity field in (15) do not interact so that we can
treat each component separately. Henceforth, we
consider the x component only. The Euler-
Lagrange equations become

A Z cnV"u(X)

m =0
== Z Vialv(x.:)

where 8 is the Dirac delta function. The c,, are
given by ¢,, = 6®™/(m12"). This choice ensures that
the Green function of the operator .o ¢, V2" is
the Gaussian G(x, ), in other words

= dg] 8(x — X7) (16)

<lm

g
m=0 {m!2™)

VG(¥,0) = 8(X) (17

Using (17) we see that the solution to (16) is of
the form

v(F) = 2 BGE - %) (18)
Substituting this back into (16) we obtain

A2 BS(E = X)

= =2 V.lu(@x) -

Equating coefficients of the delta functions gives
us a set of equations

AB, = — 2V, 005) + 2 Vid (20)

dig)8(xX = X)) (19)

Now, we can use 2, V,, = | and substitute for v

from (18)
= = 2Gyb; + 2Vidi, 21
J a

where G; = G(x/ —Nx;-). Using the summation
convention (@b, = ) ., ab; and aHb, = 2%, S,
aHb,), and the Kroenecker delta function we
find

(A'su + Gu)Bj vadm (22)
Now we substitute back for v from equations (18)
and (20) into the energy function. This gives.
using the summation convention,

E(V,,) = A’BB; + ABG,B; (23)

Using (22) gives
E( via)

= K(vad:a)(mij + G.-,-)"(Z Vbidbj) (24)

In the limit as 6 — 0, we obtain A5; + G, — &,/
2na’. Therefore

Epmil = M2m0(Y Vi d, ) (25)

This has the same minimum as a function of V,
and thus makes the same predictions as the
minimal mapping theory, which is given by

E m = Zviadia (26)

This similarity provides a new interpretation for
the minimal mapping theory. As figure 1 illus--
trates, the limit ¢ — 0 corresponds to the situation
where the locally measured data are most respect-
ed. In this case, the constructed velocity field cor-
responds to sharp peaks centered ayound the data
points and large valleys between these peaks.
Such a landscape is most smooth when the peaks
are small. Thus, the smoothest choice of corre-
spondence occurs for the smallest velocities, that
is, for minimal mapping.

Curiously, we also found that if A — o, then the
correspondences of the motion coherence theory
and the minimal mapping theory coincide. In-
deed, in this limit, A§; + G; — Ad;. The reason for
the similarity between the theories in this case is
that since ¢, # 0, the constructed field tends to
zero. Thus, the energy (12) depends only on the
distances between the matched features and is
minimal when these distances are minimal.

There is an interesting parallel between this
method of eliminating the velocity field and cer-
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tain theories of physics. We have shown that the
velocity field, which is local, can be eliminated to
obtain a nonlocal interaction between the fea-
tures. The velocity field can therefore be con-
sidered merely a fictitious field, which is not es-
sential for the interaction and can be eliminated.
The concept of the velocity field is important,
however, since it acts as a unifying principle for
all types of motion. In a similar way, Wheelerand
Feynman [42, 43| considered a system of charged
particles interacting via an electromagnetic field.
They showed that the electromagnetic field could
be eliminated from the system, and hence con-
sidered fictitious, leaving a nonlocal interaction
between the particles.

5 Combining Different Forms of Measurement

We have illustrated how the motion coherence
theory applies to situations where the motion
measurements take different forms. We can com-
bine different types of motion measurement into
one cost function. Suppose, for example, that we
can measure simultaneously the short-range mo-
tion of some isolated features (equation 3), mo-
tion of contours (10), spatial and temporal
derivatives of image intensity (12), and long-
range positions of salient features (14). The mo-
tion coherence theory would then propose mini-
mizing (through the combination of these equa-
tions):

E((F@)V.0) = v 2UG0D) - (0))
+ . V(%) - AF) — u(@®)?

ol
+v, [ (VI-F()'E) + ;,7)
Y 2ZVali(6) = (5= D)’

+Af Zﬂ cn(D"V) (27
The only difficulty would lie in assigning the
relevant weighting factors w,, y,, v, and y, to the
measurement terms. These weights should de-
pend on the relative reliability of the information
given by the different terms and might be deter-
mined experimentally.

The theory gives a natural way of combining
short-range and long-range motion; psycho-
physical evidence for this combination exists
[44].

6 The Aperture Problem and Motion Capture

There are two important problems in motion per-
ception with which the motion coherence theory
can deal; they are the topics of this section: the
aperture problem and motion capture.

An example of the aperture problem consists of
finding the motion of a contour; local motion
detectors can only detect motion that is perpen-
dicular to the contour. The motion coherence
theory for contour motion appears in equation
(10). We obtain the smoothest velocity field in the
two-dimensional space, in contrast to Hildreth,
who obtains the smoothest velocity field along the
contour (figure 4).

For our solutions, the computed speed is
smaller than the true one (see equation (7)). This
is due to the term c,, which forces the overall
speed down, but is necessary to ensure that spatial
interactions drop off at infinity. If ¢; = 0, we can
prove that the correct solution may be obtained
for a certain class of stimuli, and in particular, the
correct answer is always obtained for transla-
tional motion (see appendix D). Similar results
hold for Hildreth's method (see [45]). Psycho-
physical experiments, such as the rotating-ellipse
illusion [11], show that humans may not estimate
the correct velocity fields for other stimuli. In a
number of examples, Hildreth showed that when
her method gave the incorrect velocity field, it was
often close to the perceived motion.

The motion coherence theory also agrees with
experiments by Nakayama and Silverman {15,
16] that investigated variations of the aperture
problem that are not easily explained by current
theories. These experiments displayed curves
translating over time (figure 5) and showed that
the correct motion is not always perceived even
when the curves are moving rigidly, that ter-
minators in the curves enhance the rigid percepts,
and that terminators near the curves may also
lead to this enhancement. The motion coherence
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Fig. 4 The aperture problem. A circle of unit radius was
assumed to be moving to the right with a velocity of 1.0. If the
motion is measured with local detectors. then only the com-
ponents of the motion perpendicular to the contour can be
measured. This is an example of the aperture problem:; and in
the left figure, these perpendicular components are shown.
The velocity field along the contour, as predicted by the mo-
tion coherence theory. is shown in the right figure. This field
was computed by solving equation (10) with A = 0.00l ando =
3. The isolated dot moving at the bottom of the right figure has
the correct velocity of the circle, implying that the aperture
problem has been solved. The average speed of the computed

theory accounts for the nonrigidity (figure 5),
because if ¢, # 0 the aperture problem is not com-
pletely solved (appendix D). However, if the dis-
play includes terminators, then they provide extra
information that helps to improve the solution.
The theory controls the relative importance of on-
the-curve and off-the-curve terminators through
the y of equation (27), which must be found
through experiments.

velocity field along the contour was 0.996, which is incorrect
by only 0:4%. The motion coherence theory solves the aperture
problem in a different way than what Hildreth proposed [11).
She suggested that the visual system integrates motion infor-
mation along contours, as illustrated in the left figure by the
contour's highlight. In this case. the contour motion does not
interact with off-the-contour information. The motion cohe-
rence theory. on the other hand. integrates motion over space
(left figure's small circle). Thus, this theory predicts that the
solution of the aperture problem may interact with off-the-
contour motion. - .

The theory gives a possible explanation for mo-
tion capture [5]. In this phenomenon, randomly
moving dots are captured and move coherently
with a superimposed grating or a surrounding
contour. The motion coherence theory simul-
taneously solves the aperture problem of the sur-
rounding contour and captures the internal dots
[t-3]. The theory also predicts that capture may
happen when only a few dots move. An example
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Fig. 5. Variations on the aperture problem. In this figure,
Gaussians move upward with the speed highlighted in the
right panels. In all panels, the left and the right displays show
the motion coherence theory respectively. Nakayama and
Silverman [15. 16] studied these paradigms. and their results
are consistent with the theory. In the left panels, the
Gaussians extremities weee occluded. In this case, the theory
predicts a nonrigid percept (upper left panel). However, when
features that move with the same velocity as the curve flank it

of this occurs when a central ambiguous motion
is captured by a peripheral unambiguous motion.
Psychophysical experiments with such para-
digms were performed. The results were consis-
tent with the motion coherence theory and incon-
sistent with the minimal mapping theory [3}.

7 Extensions to Motion Discontinuity, Time
Integration, and Transparency

In this section, we discuss possible extensions of
the theory which deal with three problems the

they capture it and make it look rigid (lower left panet). This is
consistent with the motion coherence theory but not with
Hildreth's theory [11] (see figure 4). Furthermore, if we break -
the curve, then the extremities’ information help to solve the
aperture problem (upper right panel). It is solved less well if
the extremities are far from the center (lower right panel).

theory currently does not handle: discontinuities,
temporal integration, and transparency.

There are several possible ways to extend this
work to deal with motion discontinuities. These
include the following three alternatives: First,
using line processors to break the smoothing [46-
48], second, detecting edges in the measuring
stage's velocity field and then smoothing inside
the edge region again [56] (see section 8), and
third, using estimation of the velocity field
whereby neighboring elements support each
other if they are similar, but do not if they are
dissimilar. :
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Psychophysical experiments have shown [24,
25,49, 50] that for long-range motion there are in-
ertia effects whereby the history of the motion af-
fects the correspondence between features. It is
also likely, on engineering grounds, that the
velocity field is not measured instantaneously,
but is estimated over time. There are several
methods by which the motion coherence theory
could be extended to include temporal integra-
tion and some: of these are discussed elsewhere
[3, 51].

The phenomena of transparency is relevant
here. They occur when two or more fields of mo-
tion with very different spatial and temporal
characteristics are superimposed, in which case
they do not interact, but slide past each other [14].
There are at least two possible, and maybe comp-
lementary, hypotheses to explain these effects. In
the first, if the motions are too dissimilar, then no
interaction between them occurs (this may be the
case if their measurements are performed by dif-

ferent spatiotemporal filters [56 and Adelson,

private communication)). In the second, motion
cffects over time are included: If the estimate of
velocity changes too quickly with time, then this
may be due to integrating over different surfaces
and two or more regions are created. (However,
this hypothesis cannot explain all transparency
phenomena, because they may occur when the
moving features are short-lived {52].)

8 Discussion

In conclusion, we propose a motion coherence
theory that deals simultaneously with the aper-
ture problem and the phenomena of motion cap-
ture and motion cooperativity (see also [30]). The
theory differs from some other works that deal
with similar problems [9, 26-30, 53, 54|. While
these works are based on “neural” considerations,
the motion coherence theory is a computational
theory based on an optimization process. Thus,
systems based on this method can directly incor-
porate realistic constraints of motions in the
visual world [55]. Nevertheless, in spite of the
computational approach, the theory’s elements,
even for long-range motion [40), can be inter-
preted in terms of neural processes.

The exact choice of the smoothing filter is an
important experimental question. We have cho-

sen the Gaussian because of its many fine proper-
ties, but there are many alternatives. The situation
is slightly analogous to action-at-a distance
theories of physics, such as Newton's theory of
gravity, where the force between two points falls
off inversely proportional to the square of the dis-
tance. For the motion coherence theory, using the
Gaussian filter, we have an interaction between
features that falls off as the negative exponential
of the square of the distance. This decreases
rapidly with distance. Psychophysical experi-
ments to determine what the exact fall off law is,
and in particular, if it is a Gaussian, can be
done.

We have emphasized the importance of requir-
ing that the interaction falls off with distance. If
this condition is not satisfied then the velocity
field will become arbitrarily large the further
away we are from the data. Perhaps more serious-
ly, a feature is more likely to be captured by an ob-
ject that is far away from it, rather than by an ob-
ject close by. In our theory the interaction is con-
trolled by the ¢, term in the cost function,

An alternative way to prevent the velocity field
from blowing up atinfinity is to impose boundary
conditions on the field. However, in this case (see
appendix E), the resulting velocity field will de-
pend strongly on the choice of the boundary. In
some situations, a boundary may be found
naturally (for example, by image segmentation
through brightness, texture, color, or motion) and
natural boundary conditions on the velocity field
would occur.

Thus, if the boundaries can be found reliably,
then the ¢, term can be dropped. (In appendix D
we show that if ¢, is dropped, then the correct
velocity field would always be computed for 2-D
translations.) In this case the boundary con-
ditions would have a stronger effect on the veloci-
ty field than if ¢, # 0. It is an open experimental
question to see if this occurs.

However, if the boundaries cannot be found
reliably and are set arbitrarily, then if the ¢, term
is dropped, the resulting velocity field will depend
strongly on this arbitrary choice (unless the data
is dense everywhere). The boundary terms behave
like measurement sources that influence (and some-
times capture) the motion of the internal features.

There is a subtle difference between our inter-
pretations of the short and the long versions of the
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motion coherence theory. In the former case, the
perception is of the constructed velocity field. In
the latter case, what is perceived may sometimes
be the correspondence. This issue matters, be-
cause in general, a given correspondence and its
constructed velocity field do not coincide. If the
number of moving features-is small, then there is
strong evidence that correspondence is estab-
lished. However, if this number is large, then pre-
cise correspondence may not be computed.
An approach similar to the motion coherence
th=ory can be applied to stereo [Yuille and Gen-
_ nert, private communication]|. Stereo can be con-
sidered as a “special case” of long-range motion
and so most of the mathematics of the motion
* coherence theory can be directly applied. Yuille
and Gennert describe a theory of sterec that
matches image intensities and salient features.
This theory is specified at an abstract level in
terms of minimizing a cost functional. We stress
that the minimization of such a cost functional is
inherently a parallel process and could be per-
formed on a parallel computer or a neural net-
work. Elsewhere, we describe a parallel network
thatimplements our long-range theory under cer-
tain conditions [40].
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Appendix A

This appendix proves two main results. First, we
can choose the ¢, so that the interaction is

169

mediated by a Gaussian. Second, the interaction
falls to zero at infinity if and only if the ¢, term
is positive.

Suppose we have a set of measurements U, at
points X,. The Euler-Lagrange equations of equa-
tion (1) are:

A2 (= 1)"c, V"i(E)

m o=@

= - 28 - H)FE - U) (A1)
The solutions of these equations are of the
form

VE) = 2B, SE) - %) (A2)
where f{X) is the Green’s function of the differen-
tial operator 3 m.o(~1)"c,, V*".

More precisely

ac

2 (=", V" f(F) = 8(F)

m=0

(A3}

To solve this equation we apply Fourier trans-
form theory. If the Fourier transform of f(X) is
given by g(®), then we obtain

1
Dl @ - B)”

To show that the Gaussian is a solution we note

8(d) = (A4)

" that its Fourier transform is

1
exp|[—(& - @)6%/2|

(A3)

We expand the denominator in powers of & ®
and choose the coefficients ¢,, 50 they are the coef-
ficients of this expansion. Thus the Gaussian can
be chosen as the interaction.

Now consider integrating equation {(A3) over a
region bounded by a large circle centered on the
origin. The integral of the right-hand side will be
1, because of properties of the delta function. The
integral from the left-hand side will have a num-
berof differentcontributions from all the terms in
the summation. If we apply the constraint that f
and all its derivatives fall to zero at infinity faster
than 1/r, where r is the circle’s radius, then in the
limit, as the size of the circle goes to infinity, the
contributions from the terms with n > 0 will
vanish. This is because by Stokes theorem:

J-space vsz(f) = jlboundnry 6[v2m—2f(f)l (A(’}
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and the right hand side integrand goes to zero
faster than 1/ron the boundary. So, if ¢, = 0 we ob-
tain a contradiction. Thus, ¢, > C is a necessary
condition for the interaction to fall off fast
enough.

Conversely if ¢, » 0 then the energy function
contains a term

¢o | B(X)- (R)dx (A7)

For this term to be finite, the velocity field, and

hence f(x), must fall off faster than 1/r as r —
o,

Appendix B

We now consider the spatial fall-off of interac-
tions for Horn and Schunck’s theory [10].

This theory proposes minimizing a cost func-
tion

EF) = [(VI-F + 1)

ol Reg5) @
The Euler-Lagrange equations are
AVIY = VI©G - VI + 1) (A9)
We can write this in coordinate notation
AV, = DVISIy, + VI, (A10)

where the indexes ij correspond to the x,y com-
ponents of the vectors.

In (A10) the term VZ ¥/, effectively corresponds
to a ¢, term, because it is the coefficient of the
linear term in v in the Euler-Lagrange equations,
and because it is nonnegative definite. If the data
is dense, then this term will prevent the interac-
tions from becoming long range. Observe, how-
ever, that the smaller | 97| is, the longer the range
of the interactions. Thus, if there are regions in
the image where | V7| is very small, which is often
the case, the interactions become véry long
range. .

Appendix C

We discuss a simple version of the motion
cooperativity experiments. It consists of a set of

dots randomly and homogeneously distributed
all over the space. They are also assigned
velocities with a probability distribution P(T)). We
want to calculate the mean and the standard
deviation of the velocity field predicted by the
motion coherence theory. To perform this calcu-
lation, we assume that the distribution of the dots’
positions and velocities in small regions of the
image is representative of the overall probability
distributions. By small we mean on the spatial
scale, o, of the interaction. This assumption will
only hold if the number of dots is large on this
scale. More precisely, if pne® > I, where p is the
density of the dots.
The Euler-Lagrange equation is

ki (_l)m c.lm

m =0 {m!2™)
=~ 28( - X)v(¥) - U] (A11)

Then, the velocity field (again we can consider
each component separately) is given by

v(F) = YBGE - 3) (A12)

where the é,- obey (obtained by substituting equa-
tion (Al12)} into (Alt))

(A; + G)B, = U, (A1)

where G; was defined in equation (6), the summa-
tion convention is used (see its definition before
Equation (22)), and the U, are the components of
the velocity data. This can be written as

VZm ;(i")

B; = 4,U; (A14)
where
A,}' = (la,'j + GU-)_I (AIS)

Note that 4; depends only on the dots’ spatial dis-
tribution and U, depends only on P(D)). We use the
notation (U7), to denote the expectation U, with re-
spect to the velocity distribution P, and define H;
= G{x — x). Then, we obtain

v(¥) = Hd,;Uj (Al6)
Thus, the mean {v(x))s, is given by
<U(f)>s,u = <HiAa‘jtjj>S,u (A17)

To find 4; we expand it in an infinite Taylor
series. Setting g = 1/(2ra?) we find
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Ay = (A +£)8; + G, — g8l (AlB)
n =m0 _l ” .
A+gn=v (A+g)
Ar'f = 1 (—1)"
A +gn-0 ()\.+g)"
< n! )

(=1)~mgnmGn (A20)

m=0ml(n—m)!

So we must evaluate the expectations of terms like
GjG(x — x)U,. We assume that exactly N dots are
distributed uniformly in a square box of side L,
which has an area similar or larger than ne”. The
density p is therefore given by p = N/L*. The fixed-
N assumption is valid, because the number of dots
inside the box is large (> pno?) and follows a
Poisson distribution, which in this case, has a
smail standard deviation to mean ratio. After
doing these expectation calculations, we will take

the limit as N — o and L — . The expectation of J-.

GJGG -
> Jow- )60 5x ..
i.i|.j.'-"‘fm_|
XG(,,
dx;

m_| d'ﬁPUdU
r 2 Py

XU, is given by

e dx; dx;,
- x)G(x — x)U,; o

(A21)

We evaluate the integral (the Gaussians integrate
out to 1) and perform the summations. Using p =
N/L? this yields

p" U (A22)

Thus, whenever we obtain a term of the form
GIG(x — X)U, in (A17) we replace it by (A22).
We find

_ W T (=1
W= e p2 (A +g)
x 3 M (1ymgrmpm (A23)

me=omi(n — m)!
This can be summed to give

oy = W (=1
Atg " (A+g)

(p—g) (A24)

Thus, we obtain

_ - _ P
wr= 5

(% (A25)

To compute the standard deviation we must
evaluate terms of the form

(= ((H,A,,U) > (A26)
vi(¥) = (;Z AG(F -
Y U,A,,,,G(x ,,)Uq> (A27)

We must now evaluate the expectations of terms

like G;GG — ¥)UGL,GE — %,)U,. This is

i J‘G(-’-E - fi)G(fi,)

i-i|~-‘--'.m-|lj

PO q=1
X G(fii - fiz) X ... G(fim-l _fJ)U]
X G(F = %GR, = %, )G(%, — F,) X ...

ey dx; d%,

XU(x,, , — ‘,)U‘r X Lfi x.

dx;, _, dx; dx, di,

i

L L* L L

dx dx
X L”g '
We evaluate the integral, except for the j, g terms
(the Gaussians integrate out to 1), and perform
the summations. Using p = N/L? this yields

1 P(U) dU)P(U U, (A28)

N
pm+bi qz-l J‘G”’("' ol = ff)UfG‘!-quh
’ X, di
(X~ X)) Lx L"U P(U) dUP(U,)dU,

(A29)

We first consider the diagonal terms, wherej = ¢.
Integrating the Gaussians gives,

meb+) ) 1 ’
s w? 2n(m + b + 2)o? (A30)
The remaining, off-diagonal, terms gives
pree M2y (A31)
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which becomes
pm +b+ 2< U> 2

in the limit of large N.
Thus, the total contribution of the diagonal
terms is

4=y ¥ 3 LW

0 (k+g)"+'
n! -~
pl(n=p) A+ g)™
m' pp+q+l
qi(m — ¢)! 2n(p + q + 2)c?
To evaluate this formula, we use the identity

pp+q+l
Zn(p + g + 2)o?

(A32)

(—g)y~?

(-g™*

(A33)

f dsgprat! (A34)

2110

We find by substltutmg (A34)into (A33) and sum-
ming over p and g:

W 1 Gl § .

A= -
2no? j nm (k + 2! aig O

(—1)’" oy
GrgrT 8 (439)
Therefore

A e s (A36)

2ne? p (A + 5)?
20D 1 p+Ay__p
4= 2n6? p [log( A ) p+ A.]
(A37)

The total contribution of the off-diagonal terms
is

(=1 n- n!
B= =l (=)
; ,.; A+ S pi(n — p)!
-1y 1
ﬁ%ﬁ (—g)"* W';@:_Q)T pP It U)?

(A38)
By comparing (A38) to formula (A23) for the
mean we see that

(U (A39)

(p + l)z

¥

The variance of v(¥) is found by subtracting the
square of the mean from the sum of 4 and B,

This yields _
1 p+ A )
p [Iog( x

=L

2na?

var(v) £ x]<U2>

(A40)

Appendix D

In this section, we consider the aperture problem.
We consider an object translating rigidly in the
image plane and prove thatif ¢, = 0, then the true
velocity will always be calculated. If ¢, # 0, as in
the motion coherence theory, the calculated
velocity will only approximate the true velocity,
although simulations show that the approxima-
tion is usually good.

Psychophysical experiments [15, 16] show that
the true velocity field is not always perceived for
rigidly moving objects. This gives an additional
motivation for setting ¢, # 0.

Suppose we have a contour C, 7 = #s), with nor-
mal vector 1(s), where s is the arc length. The nor-
mal components u(s) of the velocity field are
measured and the theory predicts the velocity
field that minimizes

EG) = [17-76) - uo)’
+ XIZ e D™0)?
which was given in equation (A32). The mini-
mum of this energy function satisfies the Euler-
Lagrange equation
[8F - 315 - 7(s) = uls)
[

= 3 (-1, DIE)

m =

(A4])

(A42)

If the object translates rigidly, then the true
velocity field is constant, 4. The data u(s) are given
by u(s) = a-r(s). Now substitute () = 4 into
(A42). The left-hand side of the equation will be
automatlcally zero. The right-hand side equals
—cq. Thus the true velocity field is a solution if
and only if ¢, = 0.
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Appendix E

We now show that the velocity field will depend
strongly on the boundary conditions if ¢, = 0. For
simplicity we consider the analogous problem of
interpolating a function f{X) from data 4, given at
points X, fori = 1,...,N. (For example, f{x) could
be one of the components of the velocity field.)
Suppose we have a cost function
i=N

B = fydsi + 3 UG -dlf (a4

We now choose a boundary ¥ = X(s), where s
parameterizes the curve 0 < s < S, and impose
the boundary conditions that f(¥(s)) = O (the
same analysis can be applied if we choose f{x(s))
= wy(s), where y(s) is an arbitrary function,
- perhaps found by some other process).

We impose these boundary conditions by using
Lagrange multipliers. This gives a modified
cost function

i=N

B = [Wids + 3 @) - d)*
+ If(f ($))A(s) ds (A44)

which is minimized with respect to the field f(x)
and the Lagrange multipliers A(s).

Minimizing with respect to the Lagrange mul-
tipliers and f(X) gives

f(Z(s)) =0 (Ad52)
L¥(%) = ZS(E - E)fGE) - d])
+ j 5[X — X()]A(s) ds (A45b)

The solution is thefefore of form
N
SG&) = 2 a6 - %)
i=l

+ j w($)Gr[% - 7(s)] ds (A46)
where Gr(X) is the Green's function of the
operator L?, and the a, and (s} are chosen to satis-
fy (A45a) and (A45b). This gives

N

2 aGriz(s) — %]

F=l

+ J-p(s)Gr[i'(s) -X())dt=0

N
a =212 aGrE —X)

Ioi=l

(Ad7a)

+ J WG, - Z()] di} + d, (A47b)

These equations are similar to those obtained
without boundary conditions. The boundary terms
behave like measurement sources that influence (and
sometimes capture) the motion of the internal
Jeatures. However, there is one important differ-
ence: At the boundary, the values of f(x) are re-
quired to be exactly 0 (or whatever value w(s) has
been specified), while at the measurement points,
%, the function f(¥) is only required to be near the
data d,. Thus the “data” at the boundary will be
imposed more strongly than the data at the
measurement points.

From (A47a) and (A47b) we see that the range
of influence of boundary points will depend on
the spatial behavior of the Green’s function Gr(X).
If the Green's function increases with distance
(for example, if L = ¥V and GrX) = log|X]), then
the choice of boundary conditions can have a
large effect on the motion. If the Green’s function
falls off with distance (for example, if ¢, # 0}, then
the boundary conditions will usually have less ef-
fect, and will give a negligible contribution as the
boundary is sent to infinity,

Similar calculations can be done if the mea-
surements are on contours or on dense data. The
conclusion is the same: The boundary terms will
influence the motion, and the range of this in-
fluence is determined by the Green’s function
of L,
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