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Two Parts

(1) Markov Random Fields for Spatial Context

(2) Mean Field Theory for Inference on Markov Random Fields



Vision as Bayesian Inference

Markov Random Fields (MRFs)

We introduce MRFs to model specified context of semantic segmentation
They capture the intuition that if one pixel is an airplane then neighborhood pixels 
are likely to also be airplanes
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: The pixels of the image
: The Pixel label, e.g. xi={Airplane, Sky, …}
: Unary evidence for pixel i to have label xi

Can be learned by a Deep Network
: Context terms 
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Vision as Bayesian Inference

Markov Random Fields (MRFs)

The goal is to find the spatial configuration

This gives the spatial configuration which best combines the unary and the binary 
terms
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Problem: Estimating     is typically very hard. Often an NP complete problem
If each xi takes M states (airplane, sky …), then there are M|W|

possible configurations of x Too many to enumerate

x̂

Probabilistic formulation
Gibbs Distribution
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Note: typically impossible to compute Z
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Vision as Bayesian Inference
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Markov Random Fields (MRFs)

Solving                                   equivalent to finding 
There are several algorithms for estimating     from the probabilistic formulations

(1) Sampling by Markov Chain Monte Carlo (MCMC)

(2) Mean Field Theory (MFT)

(3) Belief Propagation (BP)

This course will describe MFT & BP.
A handout (Yuille chapter) will describe all three.

MCMC is almost always much slower than MFT & BP.
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Vision as Bayesian Inference

Mean Field Theory (MFT)

Instead of directly estimating                        , try to find a distribution 
which approximates P(x) and, from which,                              can be estimated
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Kullback-Leibler divergence between Q(x) & P(x): Relates to cross entropy
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x x

x x x x

Lecture 07-09



Vision as Bayesian Inference

Mean Field Theory (MFT)

Minimizing F[Q] with respect to Q is difficult, often impossible, but there 
exist algorithms which often find good approximate solutions. 

Note: F[Q] is a differentiable function of a continuous variable Q

So we have replaced a combinatorial optimization problem

With x discreate by an optimization problem in continuous var

[ ]arg min E=x x

[ ]ˆ arg minQ F Q=
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Vision as Bayesian Inference

Example of MFT

Simplify by making xi a binary variable xi ={0, 1}
Replace E[x] by 
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Vision as Bayesian Inference

Example of MFT
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Note: the log Z term is independent of the q’s. so we do not need to know it when 
we minimize F[Q]

Can minimize F[Q] by steepest descent
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Better is to use a discrete optimization algorithm

Lecture 07-12



Vision as Bayesian Inference

Discrete optimization algorithm

Convergence can be guaranteed by variational bounding and, in 
particular by Concave-Convex procedure (CCCP) provided certain conditions apply. 
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Derivative
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Note: Concavity of Econcave depends on      . 
Can add extra term              to ensure convexity

ijψ

The algorithm converges to a local minimum of F[Q]. 
This is often a good approximate solution.
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Vision as Bayesian Inference

Continuum Method

Can smooth the probability distribution by introducing a temperature T
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Minimize F[Q, T] for large T
Use as initialization to minimize F[Q, T] for small T

Deterministic Annealing
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