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I Semantic Segmentation is an important application of Deep Networks,

which assigns a class label to all pixels in the image. This was one of the
first uses of Deep Networks after Object Classification. It was much more
effective than pervious methods (e.g., statistical edge detection lecture). It
contained many filters, able to capture the varieties of textures of the
objects and background classes.

I This was applied to classification on the CoCo and Pascal-Segmentation
datasets. Here the classes are either object labels (e.g., Car, Cat) and a
single background class. It was also applied to Pascal-Context where the
classes include objects but also a variety of background classes (e.g., sky,
water, road). It can be extended to segmenting objects into their
constituent parts, e.g., on the Pascal-Parts dataset.It can also be applied
to segmenting organs and tumors in medical images.

I Semantic segmentation required datasets with per-pixel annotation. But it
was realized that this could be supplemented with data that was only
partially annotated. For example, where a box was specified to be a
”foreground class”, e.g., ”cat”, although it also contained non-cat
background pixels (perhaps fifty percent pixels was ”foreground”, e.g.,
”cat”, and the rest was background). This could be formulated by an EM
algorithm in the natural way (e.g., each pixel was assigned a hidden
variable which specified whether it was foreground or background). Recall
that Deep Nets are formulated as performing maximum likelihood
estimating, so we are simply extending this to include hidden variables
(technically ”simple”, in practice, this is technically complex).
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I Deep Networks for Semantic Segmentation (e.g., DeepLab) give estimates
for the class labels of each pixel. But this can ignore the spatial context,
neighboring pixels are likely to have the same labels. This spatial context
(or temporal context) can be modeled by Markov Random Fields (MRFs).
Here we will a brief introduction.

I We specify a posterior probability distribution P(x|z) defined on a graph
G = (V, E) where the set of nodes V is the set of image pixels D and the
edges E are between neighbouring pixels.

I The x = {xi : i ∈ V} are random variables specified at each node of the
graph. P(x|z) is a Gibbs distribution specified by an energy function
E(x, z).

I The energy function contains unary potentials U(x, z) =
∑

i∈V φ(xi , z) and
pairwise potentials V (x, x) =

∑
ij∈E ψij(xi , xj). The unary potentials

φ(xi , z) depend only on the label/disparity at node/pixel i and the
dependence on the input z will depend on the application:
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I In summary, the model is specified by a distribution P(x|z) defined over
discrete-valued random variables x = {xi : i ∈ V} defined on a graph
G = (V, E): P(x|z) = 1

Z(z) exp{−
∑

i∈V φi (xi , z)−
∑

ij∈E ψij(xi , xj)}.
I The goal will be to estimate properties of the distribution such as the

MAP estimator and the marginals (which relate to each other, as
discussed later).

x∗ = arg max
x

P(x|z), the MAP estimate,

pi (xi ) =
∑
x/i

P(x|z), ∀i ∈ V the marginals. (2)
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I We know describe the mean field algorithm for approximate inference.

I We define the mean field free energy FMFT(b) by:

FMFT(b) =
∑
ij∈E

∑
xi ,xj

bi (xi )bj(xj)ψij(xi , xj)

+
∑
i∈V

∑
xi

bi (xi )φi (xi , z) +
∑
i∈V

∑
xi

bi (xi ) log bi (xi ). (3)

I The first two terms are the expectation of the energy E(x, z) with respect
to the distribution b(x) and the third term is the negative entropy of b(x).
If the labels can take only two values – i.e. xi ∈ {0, 1} – then the entropy
can be written as

∑
i∈V{bi log bi + (1− bi ) log(1− bi )} where

bi = bi (xi = 1). If the labels take a set of values l = 1, ..,N, then we can
express the entropy as

∑
i∈V
∑M

l=1 bil log bil where bil = bi (xi = l) and

hence the {bil} satisfy the constraint
∑M

l=1 bil = 1, ∀i .
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I Justification for the Mean Field Free Energy,

I Substituting P(x) = 1
Z

exp{−E(x)} and B(x) =
∏

i∈V bi (xi ) into the
Kullback-Leibler divergence KL(B,P) gives:
KL(B,P) =

∑
x B(x)E(x) +

∑
x B(x) logB(x) + logZ = FMFT(B) + logZ .

I Hence minimizing FMFT(B) with respect to B gives: (i) the best
factorized approximation to P(x), and (ii) a lower bound to the partition
function logZ ≥ minB FMFT(B) which can be useful to assess model
evidence
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I Steepest Descent – or Discrete Update (Add – where is the latex file for

the Book Chapter?).

I The mean field free energies are functions of continuous variables (since
discrete variables have been replaced by continuous probability
distributions) which enables us to compute gradients of the free energy.
This allows us to use steepest descent algorithms and its many variants.
Suppose we take the MFT free energy from equation (3), restrict
xi ∈ {0, 1}, set bi = bi (xi = 1), then basic steepest descent can be written
as:

dbi
dt

= −∂FMFT

∂bi
, (4)

= 2
∑
j

∑
xj

ψij(xi , xj)bj + φi (xi )− {bi log bi + (1− bi ) log(1− bi )}.

I The MFT free energy decreases monotonically because
dFMFT

dt
=
∑

i
∂FMFT
∂bi

dbi
dt

= −
∑

i{
∂FMFT
∂bi

}2 (note that the energy
decreases very slowly for small gradients – because the square of a small
number is very small). The negative entropy term
{bi log bi + (1− bi ) log(1− bi )} is guaranteed to keep the values of bi
within the range [0, 1] (since the gradient of the negative entropy equals
log b1/(1− bi ) which becomes infinitely large as bi 7→ 0 and bi 7→ 1).
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I In practice, we use a discrete approximation of form bt+1
i = bt

i −∆ ∂FMFT
∂bi

,

where bt
i is the state at time t, but this requires a good choice of ∆.

I A simple variant, which has often been used, is to multiply the free energy
gradient ∂FMFT

∂bi
by a positive function (which still ensures that the free

energy decreases monotonically). A typical choice of function is bi (1− bi )
which, interestingly, gives dynamics which are identical to models of
artificial neural networks.

I There is a related class of discrete iterative algorithms which can be
expressed in form bt+1 = f (bt) for some function f (.). They have two
advantages over steepest descent algorithms: (i) they are guaranteed to
decrease the free energy monotonically (i.e. FMFT (bt+1) ≤ FMFT (bt)), and
(ii) they are non-local so that bt+1 may be distant from bt which can
enable to escape some of the local minima which can trap steepest
descent. Algorithms of this type can be derived by using principles such as
variational bounding and CCCP (see earlier lectures).


