
Vision as Bayesian Inference

Learning Deep Network

Example: 
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I: Input 
O: Output
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Only require that the functions  O(◦, ◦), H2(◦, ◦), 
H1(◦, ◦) are differentiable

The functions can be composed together to 
give an output O = O(W, I), W = (W1, W2, W3)
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Vision as Bayesian Inference

Loss Function ( )O( , ), =W I T LL
O(W, I): the output of network
T: the ground truth
Dataset: ( ){ }, : 1, ,n n n N=I T 

To train the deep network, we need to compute the derivatives ( )O( , ),d
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Batch Mode  Steepest descent (SD)
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Online Learning  Stochastic Gradient Descent (SGD) 

At time step, select example n(t) at random ( )1
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This is old fashioned SGD. In practice at time t, select a subset N(t) of the data
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Vision as Bayesian Inference

Loss Function

Note The loss function                        is a non-convex function of W
 Convergence cannot be guaranteed. 

We will discuss later why it is non-convex

SGD has a stochastic property which enables it to avoid some local 
minima in the loss function. 

There are theoretical results, informally called ‘Robbins-Monro theory’, 
which can even guarantee convergence to the global minimum of the 
loss function provided certain conditions apply. 

But these results do not apply to deep networks

( )( , ),O W I TL
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Vision as Bayesian Inference

We need to compute                      ?

To do this, we use the chain rule of differentiation 
 This is called back propagation
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To compute          , recall that 
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To compute          , recall that 
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Vision as Bayesian Inference

Key Idea

Computing the derivatives exploits the compositionality  of the 

function O = O(W, I) 
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