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Learning Deep Network

| >H,—>H,—>0 I: Input
Wy W, Ws O: Output

Example: O=ReLu(W,H,) » More generally, O=0(W,,H,)
H, = ReLu(W,H,) H,=H,(W,,H,)
H, = ReLu(W,I) H, =H, (W,1)

Only require that the functions O(°, ©), H,(e, °),
H, (e, °) are differentiable

The functions can be composed together to
give an output O = O(W, 1), W = (W, W,, W,)
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Loss Function 7 (O(W,1),T)=L

O(W, I): the output of network
T: the ground truth
Dataset: {(1,,T,):n=1...,N|

To train the deep network, we need to compute the derivatives diWZ"(O(W, 1),T)
Batch Mode = Steepest descent (SD)

13 d
W = W' — o(W,1),T

n=1

Online Learning = Stochastic Gradient Descent (SGD)

. d
At time step, select example n(t) at random W™ =W"'—p, d—Wf(O(W, |n(t)),Tn(t))

This is old fashioned SGD. In practice at time t, select a subset N(t) of the data

1 d
Wt+1:Wt_77 _Z O(Wiln)’Tn
IN@| ne%o aw ( )
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Loss Function

Note The loss function .Z(O(W,1),T) is a non-convex function of W
=» Convergence cannot be guaranteed.
We will discuss later why it is non-convex

SGD has a stochastic property which enables it to avoid some local
minima in the loss function.

There are theoretical results, informally called ‘Robbins-Monro theory’,
which can even guarantee convergence to the global minimum of the
loss function provided certain conditions apply.

But these results do not apply to deep networks
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oL oL oL 4
oW, oW, ow, °

We need to compute

To do this, we use the chain rule of differentiation

— This is called back propagation

oL oL 0 oL 00
To compute D = Z(O(H,,W,), T)=—-
oW, oW, AW, 60 AW,
To compute g/‘\‘/ , recall that H,=H,(H,,W,)
2 First compute —— = 2=. 22 g & _ & M,
PUe oH, "a0 aH, 7 aw, oH, ow,
oL
To compute , recall that H, =H, (I,W)

1 First compute oL _ oL H, oL _dL o,
PO oH, "R, aH, | oW, oH, ow,
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Key Idea

Computing the derivatives exploits the compositionality of the

function O = O(W, I)
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