Vision as Bayesian Inference

Learning Deep Network

\[I \xrightarrow{w_1} H_1 \xrightarrow{w_2} H_2 \xrightarrow{w_3} O \quad \text{I: Input} \]

\[O: \text{Output} \]

Example: \[O = \text{ReLu}(W_3H_2) \]
\[H_2 = \text{ReLu}(W_2H_1) \]
\[H_1 = \text{ReLu}(W_1I) \]

More generally, \[O = O(W_3, H_2) \]
\[H_2 = H_2(W_2, H_1) \]
\[H_1 = H_1(W_1, I) \]

Only require that the functions \(O(\cdot, \cdot), H_2(\cdot, \cdot), H_1(\cdot, \cdot) \) are differentiable

The functions can be composed together to give an output \(O = O(W, I), W = (W_1, W_2, W_3) \)
Loss Function \(\mathcal{L}(O(W, I), T) = L \)

- \(O(W, I) \): the output of network
- \(T \): the ground truth
- Dataset: \(\{(I_n, T_n) : n = 1, \ldots, N\} \)

To train the deep network, we need to compute the derivatives \(\frac{d}{dW} \mathcal{L}(O(W, I), T) \)

Batch Mode \(\Rightarrow \) Steepest descent (SD)

\[
W^{t+1} = W^t - \eta_t \frac{1}{N} \sum_{n=1}^{N} \frac{d}{dW} \mathcal{L}(O(W, I_n), T_n)
\]

Online Learning \(\Rightarrow \) Stochastic Gradient Descent (SGD)

At time step, select example \(n(t) \) at random

\[
W^{t+1} = W^t - \eta_t \frac{d}{dW} \mathcal{L}(O(W, I_{n(t)}), T_{n(t)})
\]

This is old fashioned SGD. In practice at time \(t \), select a subset \(N(t) \) of the data

\[
W^{t+1} = W^t - \eta_t \frac{1}{|N(t)|} \sum_{n \in N(t)} \frac{d}{dW} \mathcal{L}(O(W, I_n), T_n)
\]
Loss Function

Note The loss function $\mathcal{L}(O(W, I), T)$ is a non-convex function of W

⇒ Convergence cannot be guaranteed.

We will discuss later why it is non-convex

SGD has a stochastic property which enables it to avoid some local minima in the loss function.

There are theoretical results, informally called ‘Robbins-Monro theory’, which can even guarantee convergence to the global minimum of the loss function provided certain conditions apply.

But these results do not apply to deep networks
Vision as Bayesian Inference

We need to compute \(\frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2}, \frac{\partial L}{\partial W_3} \)?

To do this, we use the chain rule of differentiation.

→ This is called back propagation.

To compute \(\frac{\partial L}{\partial W_3} \):

\[
\frac{\partial L}{\partial W_3} = \frac{\partial}{\partial W_3} \mathcal{L}(O(H_2, W_3), T) = \frac{\partial L}{\partial O} \cdot \frac{\partial O}{\partial W_3}
\]

To compute \(\frac{\partial L}{\partial W_2} \), recall that \(H_2 = H_2(H_1, W_2) \)

First compute \(\frac{\partial L}{\partial H_2} = \frac{\partial L}{\partial O} \cdot \frac{\partial O}{\partial H_2} \)

\[
\frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial H_2} \cdot \frac{\partial H_2}{\partial W_2}
\]

To compute \(\frac{\partial L}{\partial W_1} \), recall that \(H_1 = H_1(I, W_1) \)

First compute \(\frac{\partial L}{\partial H_1} = \frac{\partial L}{\partial H_2} \cdot \frac{\partial H_2}{\partial H_1} \)

\[
\frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial H_1} \cdot \frac{\partial H_1}{\partial W_1}
\]

Lecture 07-05
Key Idea

Computing the derivatives exploits the compositionality of the function $O = O(W, I)$