Edge Detection: Deep Contour

Wei Shen's work – uses clustering and patches.

Our Work

DeepContour: A Deep Convolutional Feature Learned by Positive-sharing Loss for Contour Detection

Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, Zhijiang Zhang

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015

Motivation

- Why to apply CNN for contour detection?
 - Contour is hard to define

 Contour data are sufficient for CNN training (millions of local contour patches)

Problem Formulation

□ Given a color image patch $x \in \mathbb{R}^{n \times n \times 3}$, our goal is to determine whether its center pixel is passed through by contours or not.

$$x \in \mathbb{R}^{n \times n \times 3} \rightarrow z \in \{0,1\}$$
Non-contour Contour

Q: Is a good idea to directly use CNN as a blackbox to address this binary classification problem?

Obstacle

The large variations in the contour shapes

Ref: J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. CVPR, 2013.

Solution: Partitioning contour patches into compact clusters to convert the binary classification problem to a multiclass classification problem

Obstacle

How to define the loss function?

Q: Is softmax a good choice?

- Softmax function penalizes the loss of each class equally
- The losses for contour versus non-contour should be emphasized

Solution: Adding a regularized term to focus on the end goal of binary classification

Data Preparation

Pre-cluster contour patches according to their contour shapes.

□ Assign a label y to each contour patch x according to the pre-cluster index $\{1, ... K\}$.

$$x \in \mathbb{R}^{n \times n \times 3} \rightarrow y \in \{0,1,\dots K\}$$

CNN Architecture

Loss Function

Let $(a_j^{(i)}; j=1, ... K)$ be the output of unit j in FC2 for a image patch $x_j^{(i)}$, the probability that the label is j is

$$p_j^{(i)} = \frac{\exp(a_l^{(i)})}{\sum_{l=0}^K \exp(a_l^{(i)})}$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left(\sum_{j=0}^{K} \mathbf{1}(y^{(i)} = j) \log p_j^{(i)} \right)$$

$$-\frac{1}{m} \left[\sum_{i=1}^{m} \lambda \left(\mathbf{1}(y^{(i)} = 0) \log p_0^{(i)} + \sum_{j=1}^{K} \mathbf{1}(y^{(i)} = j) \log(1 - p_0^{(i)}) \right) \right]$$

Positive-sharing loss, the loss for positive class is shared among each pre-clustered contour classes

 To apply standard back-propagation to optimize the parameters of the network

$$\frac{\partial J}{\partial a_0^{(i)}} = \frac{1}{m} \left[(\lambda + 1) \mathbf{1} \left(y^{(i)} = 0 \right) \left(p_0^{(i)} - 1 \right) + (\lambda + 1) \sum_{j=1}^K \mathbf{1} \left(y^{(i)} = j \right) p_0^{(i)} \right]$$

$$\frac{\partial J}{\partial a_l^{(i)}} = \frac{1}{m} \left[(\lambda \mathbf{1}(y^{(i)} = 0) + 1) p_l^{(i)} - \mathbf{1}(y^{(i)} = l) - \lambda \sum_{j=1}^K \mathbf{1}(y^{(i)} = j) \frac{p_0^{(i)} p_l^{(i)}}{1 - p_0^{(i)}} \right]$$

CNN model validation

$$\gamma = \frac{1}{m} \sum_{i=1}^{m} \left[\left(\mathbf{1} (y^{(i)} = 0) - \mathbf{1} (y^{(i)} > 0) \right) (p_0^{(i)} - (1 - p_0^{(i)})) \right]$$

 $\gamma \in [-1,1]$, measuring the discrimination of the learned model between positive and negative samples.

The learned features of FC1 will be fed into structured forest to perform contour detection.

Deep Feature Visualization

results

□ Results on BSDS500

Results on BSDS500

	ODS	OIS	AP
Human	.80	.80	-
Canny [6]	.60	.63	.58
Felz-Hutt [16]	.61	.64	.56
Normalized Cuts [8]	.64	.68	.45
Mean Shift [7]	.64	.68	.56
Gb [28]	.69	.72	.72
ISCRA [39]	.72	.75	.46
gPb-owt-ucm [2]	.73	.76	.73
Sketch Tokens [29]	.73	.75	.78
DeepNet [23]	.74	.76	.76
SCG-[38]	.74	.76	.77
PMI+sPb [21]	.74	.77	.78
SE [11]	.74	.76	.78
SE-Var [12]	.75	.77	.80
N^4 -Fields [19]	.75	.77	.78
DeepContour (ours)	.76	.78	.80

Results on NYUD

Cross Dataset Generalization

DeepContour	ODS	OIS	AP
BSDS/BSDS	.76	.78	.80
NYU/BSDS	.72	.74	.77
BSDS/NYU	.59	.60	.53
NYU/NYU	.62	.63	.57

SE [11]	ODS	OIS	AP
BSDS/BSDS	.74	.76	.78
NYU/BSDS	.72	.73	.76
BSDS/NYU	.55	.57	.46
NYU/NYU	.60	.61	.56

SCG [39]	ODS	OIS	AP
NYU/NYU	.55	.57	.46

gPb [2]	ODS	OIS	AP
NYU/NYU	.51	.52	.37

Parameter Discussion

Outline

- Contour Detection
 - Overview
 - Milestones
- Our Work
- Discussions

Discussions

- Speed
 - □ Caffe per-patch mean subtraction is the bottleneck
- Accuracy
 - Limitation may caused by the confusing labels

Discussions

Thank you! Q&A