Edge Detection:
Deep Contour

Wei Shen’s work — uses clustering and patches.
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Motivation
E

- Why to apply CNN for contour detection?
o Contour is hard to define
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o Contour data are sufficient for CNN training (millions
of local contour patches)



Problem Formulation

1 Given a color image patch x € R™™™*3 our goal is
to determine whether its center pixel is passed
through by contours or not.

x € RP"%3 — 7 € {0,1}
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Non-contour Contour

Q: Is a good idea to directly use CNN as a blackbox to
address this binary classification problem?



Obstacle W =2

The large variations in the contour shapes

Ref. J. J. Lim, C. L. Zitnick, and P. Dollar. Sketch tokens: A learned
mid-level representation for contour and object detection. CVPR, 2013.

Solution: Partitioning contour patches into compact clusters to
convert the binary classification problem to a multi-
class classification problem



Obstacle

I e
- How to define the loss function?
Q: Is softmax a good choice?

-1 Softmax function penalizes the loss of each class
equally

1 The losses for contour versus non-contour should be
emphasized

Solution: Adding a regularized term to focus on the end goal of
binary classification
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Data Preparation

Pre-cluster contour patches according to their
contour shapes.

Assign a label y to each contour patch x according
to the pre-cluster index {1, ... K}.
x € RV -y €{0,1,..K}
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Negative Positive



Method

 CNN Architecture

Input layer COV1 layer

COV2 layer

COV3layer COV4layer FC1 layer FC2 layer

4x4 x128 128 51
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1 Loss Function

Let (a]@;j = 1, ... K) be the output of unit j in FC2 for a

image patch xj(i), the probability that the label is j is

o exp(a?)
j o K (l))
l

1=0 €Xp(a
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Positive-sharing loss, the loss for positive class is
shared among each pre-clustered contour classes
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Method

-1 To apply standard back-propagation to optimize the
parameters of the network
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Method
T e

- CNN model validation

y = %Z (1@ =0)-1(>@ > 0)) (5" — (1 - ps™)|
i=1

Yy € [—1,1], measuring the discrimination of the learned
model between positive and negative samples.

-1 The learned features of FC1 will be fed into
structured forest to perform contour detection.
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Experimental results i
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Deep Feature Visualization

F anenson




-1 Results on BSDS500
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Experimental results W £
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1 Results on BSDS500
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Experimental results

16
1 Cross Dataset Generalization

mmm mmmm

BSDS/BSDS v BSDS/BSDS

NYU/BSDS 72 74 A7 NYU/BSDS 72 73 .76
BSDS/NYU .59 .60 .53 BSDS/NYU .55 .57 46
NYU/NYU .62 .63 .57 NYU/NYU .60 .61 .56

mmm mmm

NYU/NYU .5 NYU/NYU



Experimental results

1 Parameter Discussion
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Outline

1 Contour Detection
o Overview
o Milestones

- Our Work
oDiscussions



Discussions
S

Speed
o Caffe — per-patch mean subtraction is the bottleneck
Accuracy

o Limitation may caused byithe confusing labels
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Discussions
I e n

Thank youl!
Q&A
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