
Lecture 7: Decision Theory and Regression

Lecture 7: Decision Theory and Regression

I The previous lecture formulated edge detection as statistical inference. We
learned probability distributions P(x |y) where x is a filtered image (we
drop f (.) and I (.) for simplicity) and y ∈ ±1 (where y = ±1 denotes edge
and non-edge respectively. We then performed edge detection by
thresholding the log-likelihood function log P(x|y=1)

P(x|y=−1)
> T .

I This can be reformulated in terms of Bayes Decision Theory. This assumes
a set of decision rules α() (with α(x) ∈ {±1}), a loss function L(α(x), y)
(the penalty for making decision α(x) when the true decision is y), and a
distribution P(x , y) over the domain.

I The Bayes rule is the decision rule α∗(x) which minimizes the risk, or
expected loss, R(α) =

∑
x,y L(α(x), y)P(x , y). The Bayes risk is R(α∗)

(caveat: almost always).

I Bayes Decision Theory is a theory for how to make decisions in presence of
uncertainty (developed in WW2 for making decision from noisy radar
signals, for decoding encrypted messages, and so on). It has been
suggested (and disproved) as a theory for how humans make rational
decisions. Advantages: it minimizes expected risk and lead to a
conceptually attractive and often very useful theory. Disadvantages,
expected risk is arguable (e.g., why not ”worst case”?), it assumes the
probabilities are known. Machine Learning (discussed later) minimizes the
empirical risk.

Lecture 7: Decision Theory and Regression

Statistical Edge Detection and Bayes Decision Theory
I We can derive statistical edge detection from Bayes Decision Theory. It is

the Bayes rule where the threshold T is determined by the prior P(y) and
the loss function L(α(x), y). (This is a standard result for binary
classification, where y only takes two possible values).

I To see this, we can re-express the risk as
∑

x P(x)
∑

y P(y |x)L(α(x), y).
Hence it is equivalent to picking the rule α(x) that minimizes∑

y P(y |x)L(α(x), y) for each x (we have used the identity
P(x , y) = P(x)P(y |x)).

I This can be re-expressed as 1
P(x)

∑
y P(x |y)P(y)L(α(x), y) (using Bayes

Theorem P(y |x) = P(x|y)P(y)
P(x)

). It follows that the optimal decision is made

by thresholding the log-likelihood (see background slides for the details).
I In practice it is often hard to specify a loss function (and often to

determine the prior). Instead we can allow T ro vary and see how the
false-positives and false-negatives vary using receiver operating
characteristic (ROC) curves and other measures (False positives and false
negatives are the two types of errors – data x which is incorrectly classified
as y = 1 or y = −1 respectively).

I Note: for edge detection Bayes Decision Theory requires specifying a class
of decision rules. For statistical edge detection this means specifying a
class of filters f (I (x)). For each filter f (I (x)) we obtain a decision rule
(BDT specifies the optimal decision rule for each filter after learning the
probability distributions). Then we should compare the decision rules for
different filters.

Lecture 7: Decision Theory and Regression

Regression and Bayes Decision Theory

I An alternative is to learn the distribution P(y |x) directly. This is called
regression. Some authors use ”regression” only if y is a continuous
variable. But in this course we will use ”regression” for binary/multiclass
as well as for continuous.

I From a Bayesian perspective P(y |x) is the posterior distribution and it is
derived from the likelihood function P(x |y) and the prior P(y) by Bayes

Rule: P(y |x) = P(x|y)P(y)
P(x)

. In other worlds, the likelihood and the prior are
basic but the posterior is derived from them.

I But from the perspective of regression, or discriminative approaches, there
is no need to have a prior or a likelihood function. After all, the decision
should be based on P(y |x). Learning P(y) and P(x |y) may be
difficult/impossible and a waste of effort. Inevitably we will need to use
simplifications when learning P(y) and P(x |y) (due to limited amounts of
training data, needing to guess the types of models for the distributions,
etc.).

I The situation is even worse for vision. Because it is extremely hard to put
probability distributions on images since they are so high-dimensional.
But, for many visual tasks, the dimension of y is much smaller. So it is
practical to learn P(y |x) but much harder to learn P(x |y).

Lecture 7: Decision Theory and Regression

Linear Regression

I This was invented by Gauss (roughly in 1800) when trying to find the
planetoid Ceres by predicting its position from previous estimates. This
could be formulated as expressing y = ax + b + ε , where a, b are unknown
parameters and ε is zero mean Gaussian noise. This can be written as a
probabilistic model P(y |x : a, b) = 1√

2πσ
exp{−(y − ax − b)2/(2σ2)}.

I Given training data {(xn, yn) : n = 1, ...,N} the variables a, b, σ can be
estimated by (a∗, b∗, σ∗) = arg max

∏N
n=1 P(yn|xn; a, b, σ). For estimating

a, b this is equivalent to minimizing
∑N

n=1(yn − axn − b)2 which gives
linear equations for a∗, b∗, hence linear regression. There is also a closed
form solution for σ∗.

I This can be extended in many ways, e.g. by allowing y and x to be
vector-valued. It is straightforward to generalize this approach so that y is
a non-linear parametric function of x (but for some non-linear functions
estimating the parameters can be non-trivial).

Lecture 7: Decision Theory and Regression

The Perceptron (1)

I The Perceptron was developed by Rosenblatt in the 1950’s and started the
first wave of neural networks.

I The Perceptron specified a classification rule
y∗(x) = arg maxy∈{±1} y(~w · ~x + w0). I.e. y = 1 if ~w · ~x + w0 > 0 and
y = −1 if ~w · ~x + w0 < 0.

I Geometrically, ~w · ~x +w0 = 0 specifies a hyperplane and points ~x which are
above the hyperplane – i.e. ~w ·~x +w0 > 0 are classified as positive (y = 1)
– while points ~x which are above the hyperplane are classified as negative.

I This was based on a (extremely) simplified model of a neuron, where ~x
denotes the input at different synapses, ~w correspond to synaptic weights,
−w0 is a threshold, and the neuron fires an action potential if total
stimulation to the cell – given by the weighted sum ~w · ~x of the inputs – is
bigger than the threshold.

Lecture 7: Decision Theory and Regression

The Perceptron (2)

I The Perceptron can be learnt from a set of trained data
{(~xn, yn) : n = 1, ...,N}. Rosenblatt specified the Perceptron algorithm
that was guaranteed to converge to a hyper-plane ~w · ~x + w0 which
separated the positive from the negative examples, provided a separating
hyper-plane existed. If the positive and negative examples cannot be
separated by a hyper-plane then the algorithm will not converge. Later
researchers showed that, in this case, the average of the weights ~w and
the threshold w0 converge to reasonable result, which separates the
positive and negative examples as well as possible.

I The limitation of the Perceptron is that a separating hyperplane is only
useful for a limited class of problems. To make it useful you would have to
find a principled way to find features ~φ(~x) and apply the Perceptron to
those features.

Lecture 7: Decision Theory and Regression

The Perceptron as logistic regression

I We can reformulate the problem as (logistic) regression by specifying a

conditional probability distribution P(y |~x) = exp{y{~w·~x+w0}}
exp{~w·~x+w0}+exp{−~w·~x+w0}

.

I The parameters can be estimated from the training set
{(~xn, yn) : n = 1, ...,N} by (~w∗,w∗0) = arg min−

∑N
n=1 logP(yn|~xn).

I This can be performed by gradient descent:
(~w t+1,w t+1

0) = (~w t ,w t
0)− ζt(∂

∂~w
, ∂
∂w0

){−
∑N

n=1 logP(yn|~xn)}.
I This is guaranteed to converge to the global optimum (if ζt is well chosen)

because −
∑N

n=1 logP(yn|~xn) is a convex function of ~w ,w0. There is also a
discrete update rule (see lecture on variational bounding and CCCP) which
converges (without needing to specify a learning rate ζn).

I Observe that, after learning, data points which lie above the hyper-plane
~w · ~x + w0 = 0 will have P(y = 1|~x) > 1/2, while points below the
hyperplane will have probability P(y = −1|~x) > 1/2. So the hyper-plane
still separates the positive and negative examples by a hyper-plane. But
the separation is [soft] and specified by a number P(y = 1|~x ∈ [0, 1]
which tends to 1 for data points which are infinitely above the
hyperplane and to 0 for points infinitely below.

I Note that the original Perceptron assigned output values ±1, but these
can be modified to be {0, 1} by a simple transformation.

Lecture 7: Decision Theory and Regression

Multi-layer Perceptrons (1)

I ”Soft” Perceptrons represent the output by a continuous function –
P(y |~x) or σ(~w · ~x + w0) – which is differentiable as a function of ~w ,w0.
This makes it possible to build a network, called a multi-layer perceptron,
by stacking perceptrons on top of each other so that the input to a
perceptron is the output of another perceptron. The differentiability of the
individual perceptrons ensures that the final output is a differentiable
function of the parameters of all the neurons. This gives a natural learning
rule which performs steepest descent on the input-output function.

I A simple example has output y = f (~w , {~Ωi}, ~x), where y = σ(~w · ~z) with

~z = (z1, z2, z3) and zi = σ(~Ωi · ~x), for i = 1, 2, 3. Here the {zi} are called
hidden variables since they cannot be observed directly.

I The weights ~w , {~Ωi} can be learnt from training data
{(~xn, yn) : n = 1, ...,N} by minimizing an energy function.

E(~w , {~Ωi}) =
∑N

i=1 E(~xn, yn : ~w , {~Ωi}). Here E(.) is a measure of
similarity between the true output yn and the predicted output
f (~w , {~Ωi}, ~xn). From the regression perspective, this can be formulated as

P(y , ~x) = (1/Z) exp{−E(~xn, yn : ~w , {~Ωi})} (strictly speaking you must

require the condition that
∫
dy exp{−E(~n, yn : ~w , {~Ωi})} is independent of

~w , {~Ωi}).

Lecture 7: Decision Theory and Regression

Multi-layer Perceptrons (2)

I The learning rule requires differentiating with respect to the weights. This
is straightfroward to do for ~w (since the output fnction depends directly in

~w). It is harder for {~Ωi} but can be done by the chain rule – known as
backpropagation because it propagates the error back so as to reward the
weights of the neurons in the early layers of the network (this solves the
credit assignment problem).

I Solving for the weights is a non-convex optimization problem. This can be
easily realized because the network has hidden symmetries – there are
several different ways to get the same input-output function by permuting
the hidden units (and making changes to the output weights). This means
that for any minimum of the energy function there exist several other
minima with exactly the same values. Hence there cannot be any single
global minimum (unless these minima are all connected by a valley).

I This symmetry means that there are a set of minima which are equally
good as solutions and we only need to converge to one of them. We can
perform steepest descent on the energy function – which riaks getting
stuck in a local minima or a saddle point before reaching one of the
”good” minima.

Lecture 7: Decision Theory and Regression

Multi-layer Perceptrons (3)

I An alternative is stochastic gradient descent. This selects a single training
example at random, performing one iteration of steepest descent, then
selecting another example, and so on. If the learning rate ζt satisfies
certain fall-off conditions for large t then in some cases (not multi-layer
perceptrons) the learning algorithm can be guaranteed to converge to the
global optimum. This is known as Robbins-Monroe. Intuitively, stochastic
gradient descent will prevent the algorithm from getting stuck in local
minima (because these are unlikely to be at the same positions for all
training data).

I In the second wave of neural networks, batch-processing meant using all
your training examples at the same time and online learning meant doing
stochastic gradient descent. But in the third wave datasets are so big that
it is impractical to use the full batch. Instead we select sub-batches at
random, which means that we do stochastic gradient descent.

