
Probabilities and decision theory

I We now describe a principled approach for combining the response of
many features/filters to perform tasks like stereo or motion estimation.
This approach is based on decision theory. This section also illustrates the
importance of knowing whether filter responses, hence visual cues for the
task, are dependent or independent.

I We introduce the probabilities of filter responses by describing a classical
experimental finding about natural image statistics. Intuitively, the
intensities of neighboring pixels tend to be similar. This intuition can be

captured by taking derivative filters of the image, i.e., dI
dx

or d2I
dx2 , and

plotting their probability distribution, or histogram. Surprisingly these
probability distributions are very similar from image to image (Simoncelli
& Olshausen, 2001).



Edge detectors/ texture detectors and decisions

I Consider the tasks of deciding whether an image patch at position x
contains an edge by which we mean the boundary of an object or a strong
texture boundary (e.g., the writing on a t-shirt). The previous section
showed that some Gabor filters are tuned (i.e., respond strongly) to edges
at specific orientations. But such filters will also respond to other stimuli,
such as texture patterns, so how can we decide if their response is due to
an edge? The simplest way is to threshold the response so that an edge,
at a specific orientation, is signalled if the filter response is larger than a
certain threshold value. But what should that threshold be? How do we
do a trade-off to balance false negative errors, when we fail to detect a
true edge in the image, with false positive errors when we incorrectly label
a pixel as an edge?

I Also each filter in a filterbank contains some evidence about the presence
of an edge, so how can we combine that evidence in an optimal manner?
How can we formulate the intuition that some filters give independent
evidence, while others do not?



Decision theory

Decision theory gives a way to address these issues. The theory was developed
as a way to make decisions in the presence of uncertainty. In this section we
develop the key ideas of decision theory by addressing the specific task of edge
detection. In the next section we give a more general treatment. We only treat
the case when we are detecting edges based on local evidence in the image.
Later we extend to when we can use nonlocal, or contextual, information.



Filters

To start with, we consider the evidence for the presence of an edge using a
single filter f (.) only. We assume we have a benchmarked data set so that at
each pixel, we have intensity I (x) and a variable y(x) ∈ {±1} (where y = 1
indicates an edge, and y = −1 does the opposite). We apply the filter to the
image to get a set of filter responses f (I (x)). If the filter is tuned to edges,
then the response f (I (x)) is likely to be higher if an edge is present than if not.
This requires selecting a filter f (x), such as the modulus of the gradient of

intensity |~∇I (x)| =
√

dI
dx

2
+ dI

dy

2
(since |~∇I (x)| is likely to be large on edges

and small off edges).



Conditional probability distributions

I To quantify this, we use the benchmarked data set to learn conditional
probability distributions for the filter response f (I ) conditioned on whether
there is an edge or not:

P(f (I )|y = 1),P(f (I )|y = −1).

I Each distribution is estimated by computing the histogram of the filter
response by counting the number of times the response occurs within one
of N equally spaced bins and normalizing by dividing by the total number
of responses. The histograms for P(f (I )|y = 1) and P(f (I )|y = −1) are
computed from the filter responses on the points labeled as edges
{f (I (x)) : y(x) = 1} and not-edges {f (I (x)) : y(x) = 1} respectively.
Typical conditional distributions are shown in the figure on the next slide.



Figure for conditional distributions

Figure 21 : The probability of filter responses conditioned on whether the filter is on

or off an edge – P(f |y = 1),P(f |y = −1), where f (x) = |~∇I (x)|. Left: The
probability distributions learned from a data set of images. Right: The smoothed
distributions after fitting the data to a parametric model.



Statistical edge detection

We can now perform edge detection on an image. At each pixel x we compute
f (I (x)) and calculate the conditional distributions P(f (I (x))|y = 1) and
P(f (I (x))|y = −1). These distributions give local evidence for the presence of
edges at each pixel. Note, however, that local evidence for edges is often highly
ambiguous. Spatial context can supply additional information to help improve
edge detection, and so can high-level knowledge (e.g., by recognizing the
objects in the image).



Log-likelihood ratio

The log-likelihood ratio log P(f (I (x))|y=1)
P(f (I (x))|y=−1)

gives evidence for the presence of an
edge in image I at position x . This ratio takes large positive values if
P(f (I (x))|y = 1) > P(f (I (x))|y = −1) (i.e., if the probability of the filter
response is higher given an edge is present) and large negative values if
P(f (I (x))|y = −1) > P(f (I (x))|y = 1). So a natural decision criterion is to
decide that an edge is present if the log-likelihood ratio is greater than zero and
that otherwise there is no edge. This can be formulated as a decision rule α(x):

α(x) = 1, if log
P(f (I (x))|y = 1)

P(f (I (x))|y = −1)
> 0, α(x) = −1, if log

P(f (I (x))|y = 1)

P(f (I (x))|y = −1)
< 0.

This can expressed, more compactly, as

α(x) = arg max
y∈{±1}

y log
P(f (I (x))|y = 1)

P(f (I (x))|y = −1)
.



Statistical edge detection figure

Figure 22 : The input image and its groundtruth edges (far left and left). The
derivative dI/dx of the image in the x direction (center). The probabilities of the local

filter responses P(~f (I (x))|y = 1) (right) and P(~f (I (x))|y = −1) (far right) have their
biggest responses on the boundaries and off the boundaries, respectively, hence the

log-likelihood ratio log P(~f (I (x))|y=1)

P(~f (I (x))|y=−1)
gives evidence for the presence of edges.



Ambiguities in edge detection

I Note that this rule gives perfect results (i.e., is 100% correct) if the two
distributions do not overlap, i.e., if
P(f (I (x))|y = 1)P(f (I (x))|y = −1) = 0 for all I . In this case it is
impossible to confuse the filter responses to the different types of stimuli.
But this situation is very unlikely to happen. Now consider a more general
log-likelihood ratio test that depends on a threshold T ; this gives a rule:

αT (x) = arg max
y∈{±1}

y{log
P(f (I (x))|y = 1)

P(f (I (x))|y = −1)
− T}.

I By varying T we get different types of mistakes. We can distinguish
between the false positives, which are non-edge stimuli that the decision
rule mistakenly decides are edges, and false negatives, which are edge
stimuli that are mistakenly classified as not being edges. Increasing the
threshold T reduces the number of false positives but at the cost of
increasing the number of false negatives, while decreasing T has the
opposite effect.



Ambiguity of edges figure

Figure 23 : The local ambiguity of edges. An observer has no difficulty in detecting
all of the boundary of the horse if the full image is available (left). But it is much
more difficult to detect edges locally (other panels).



Decision theory and trade-offs

Making a decision requires a trade-off between these two types of errors. Bayes
decision theory says this trade-off should depend on two issues: first, the prior
probability that the image patch is an edge. Statistically most image patches
do not contain edges, so we would get a small number of total errors (false
positives and false negatives) by simply deciding that every image patch is
non-edge. This would encourage us to increase the threshold T (to −∞ so
that every image patch would be classified as non-edge). Second, we need to
consider the loss if we make a mistake. If our goal is to detect edges, then we
may be willing to tolerate many false positives provided we keep the number of
false negatives small. This means we choose a decision rule, by reducing the
threshold T , so that we detect all the real edges but also output “false edges,”
which we hope to remove later by using contextual cues. Later we show how
this approach can be justified using the framework of decision theory.



Combining multiple cues for edge detection

I Now we consider combining several different filters {fi (.)|i = 1, ...,M} to
detect an edge by estimating the joint response of all the filters
P(f1, f2, . . . |y) = P({fi (I (x))}|y) conditioned on whether the image patch
I at x is an edge y = 1 or not an edge y = −1. This leads to a decision
rule:

αT (I (x)) = arg max
y∈{±1}

y{log
P({fi (I (x))}|y = 1)

P({fi (I (x))}|y = −1)
− T}.

I This approach has two related drawbacks. First, the joint distributions
require a large amount of data to learn, particularly if we represent the
distributions by histograms. Second, the joint distributions are “black
boxes” and give no insight into how the decision is made. So it is better
to try to get a deeper understanding of how the different filters contribute
to making this decision by studying whether they are statistically
independent.



Combining cues with statistical independence

I The response of the filters is statistically independent if:

P({fi (I (x))}|y) =
∏

i

P(fi (I (x))|y) for each y

I This implies that the distributions P(fi (I (x))|y) can be learned separately
(which decreases the amount of data) and also implies that the
log-likelihood test can be expressed in the following form:

αT (x) = arg max
y∈{±1}

y{
∑

i

log
P(fi (I (x))|y = 1)

P(fi (I (x))|y = −1)
− T}

I Hence the decision rule corresponds to summing the evidence (the
log-likelihood ratio) for all the filters to determine whether the sum is
above or below the threshold T . This means that each filter gives a
”vote,” which can be positive or negative, and the decision is based on the
sum of these votes. This process is very simple, so it is easy to see which
filters are responsible for the decision.



Combining cues with conditional independence

I But very few filters are statistically independent. For example, the
response of each filter will depend on the total brightness of the image
patch, so all of them will respond more to a “strong” edge than to a
“weak” edge. This suggests a weaker independence condition known as
conditional independence. Suppose we add an additional filter f0(I (x))
that, for example, measures the overall brightness. Then it is possible that
the other filters are statistically independent conditioned on the value of
f0(I (x)):

P({fi (I (x))}, f0(I (x))|y) = P(f0(I (x))|y)
∏

i

P(fi (I (x))|f0(I (x)), y)

I This requires only representing (learning) the distributions
P(fi (I (x))|f0(I (x)), y) and P(f0(I (x))|y).



Combining cues with conditional independence

I It also leads to a simple decision rule:

αT (x) = arg max
y∈{±1}

y{log
P(f0(I (x))|y = 1)

P(f0(I (x))|y = −1)
+∑

i

log
P(fi (I (x))|f0(I (x)), y = 1)

P(fi (I (x))|f0(I (x)), y = −1)
− T} (19)

I It has been argued (Ramachandra & Mel, 2013) that methods of this type
can be implemented by neurons and may be responsible for edge
detection. Note that the arguments here are general and do not depend
on the type of filters fi (.) or whether they are linear or nonlinear. It has,
for example, been suggested that edge detection is performed using the
energy model of complex cells (Morrone & Burr, 1988).



Classification for other visual tasks

I The same approach can be applied to other visual tasks. For example,
consider using local filter responses to classify whether the local image
patch at x is ”sky,” ”vegetation,” ”water,” ”road,” or ”other”). We
denote these by a variable y ∈ Y (e.g., where
Y = {”sky”, ”vegetation”, ”water”, ”road”, or”other”}. We choose a set
of filters {fi (I (x))} that are sensitive to texture and color properties of
image patches. Then, as before, we learn distributions P({fi (I (x))}|y) for
y ∈ Y. We select a decision rule of form:

α(I (x)) = arg max
y∈Y

P({fi (I (x))}|y)Ty ,

where Ty is a set of thresholds (which can be derived from decision
theory).

I Experiments on images show that this method can locally estimate the
local image class with reasonable error rates for these types of classes
(Konishi & Yuille, 2000) and computer vision researchers have improved
these kinds of results using more sophisticated filters.



Classifying other image classes

Figure 24 : Classifying local image patches. The images show the groundtruth
(Mottaghi et al., 2014). Certain classes – sky, grass, water – can be classified
approximately from small image patches.


