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Abstract

This paper investigates the use of colour and texture
cues for segmentation of images within two speci�ed
domains. The �rst is the Sowerby dataset, which con-
tains one hundred colour photographs of country roads
in England that have been interactively segmented and
classi�ed into six classes { edge, ve getation, air, road,
building, and other. The second domain is a set of
thirty �ve images, taken in San Francisc o, which have
been inter actively segmented into similar classes. In
each domain we learn the joint probability distribu-
tions of �lter responses, based on colour and textur e,
for each class. These distributions are then used for
classi�cation. We restrict ourselves to a limited num-
ber of �lters in order to ensur ethat the learnt �lter
responses do not over�t the training data (our r egion
classes are chosen so as to ensure that there is enough
data to avoid over�tting). We do performance anal-
ysis on the two datasets by evaluating the false posi-
tive and false negative err or rates for the classi�cation.
This shows that the learnt models achieve high accu-
racy in classifying individual pixels into those classes
for which the �lter responses are appr oximatelyspa-
tially homogeneous (i.e. road, vegetation, and air but
not e dge and building).A more sensitive performance
measure, the Cherno� information, is calculated in or-
der to quantify how well the cues for edge and building
are doing. This demonstrates that statistic al knowl-
edge of the domain is a powerful tool for se gmentation.

1 Introduction
Although there has been recen t progress in gen-

eral purpose image segmentation, for example [2], [10],
[12], it remains an extremely di�cult problem. In this
paper w e examine the e�ectiveness of segmentation
using domain speci�c cues which are learnt from im-
age databases. The basic idea is that most images can
be grouped into domains. Within these domains the
statistical properties of images are likely to be very

similar, and such knowledge has been exploited for
the segmentation of aerial images. Will the same ap-
proach work for images of city and country scenes pho-
tographed from ground level? How e�ective are such
cues for the segmentation of such images?

The goal of this paper is to learn simple �lter cues
for segmentation, based on texture and colour, within
tw oimage domains (one containing 100 images, the
second containing 35). We then evaluate the perfor-
mance of the cues for these databases. This part of
our work is in the spirit of performance analysis [1].

Our �rst image domain is the Sow erb yimage
database which consists of one hundred presegmented
images of road scenes in the English countryside. The
second image domain are street scenes in San Fran-
cisco. In both domains, w e applied a set of �lters
which w ere sensitiv e to colour, texture, and edges.
We looked at the empirical joint probability distribu-
tions of these �lter responses at multiple scales. Then
w econstructed a probabilistic model for the domain
using these empirical distributions and prior knowl-
edge about the typical number of eac h class per im-
age. We can then apply Bayesian classi�cation for
eac h set of �lters and evaluate their performance on
these datasets.

We are careful to avoid the dangers of over�tting
when estimating the joint probability distributions.
Due to the so-called \curse of dimensionality" the
amount of data required to learn joint distributions
increases exponentially with the dimension of the dis-
tribution. This means that w ecan only use a lim-
ited n umber of �lters and also our classes must be re-
stricted to those for which there is su�cient training
data.

Our experiments sho w that, with suitable choice
of �lters, the Bayesian classi�cation scheme is suc-
cessful. We measure this in tw ow ays: (i) the false
positiv e and false negative classi�cation rates into the
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six classes (evaluated over the entire dataset), and (ii)
the Cherno� information betw een the probability dis-
tributions for each class, which giv es a measure of the
asymptotic error rate of classi�cation. F or classes for
which the �lters statistics are approximately homoge-
neous spatially { e.g. road, air, and vegetation { the
classi�cation rates are very accurate using either tex-
ture or colour, or their combination. The Cherno�
information is a more sensitive measure which is used
to ev aluate how well the �lters do on the more di�cult
classes (i.e. edge and building).

We stress that our classi�cations are based on lo-
cal �lter properties only and hence is fast. We do
not use any knowledge about the likely shape of re-
gion boundaries or even that neighbouring pixels are
likely to belong to the same image class. Such knowl-
edge, even in the simplest forms of regional grouping
by a boundary smoothing constraint such as snakes {
see [12], w ouldde�nitely improve the qualit yof the
segmentation. The goal of this paper, how ever, is to
demonstrate how much information is available in lo-
cal �lter cues only.

2 Background
There has, of course, been extensive work on image

segmentation using colour, texture, and other cues {
see [2 ], [10], [12] and references therein. Much of this
w ork is orthogonal to the goals of our paper as it does
not attempt to learn segmentation cues within a do-
main. Our w ork cancomplement approaches of this
type by providing prior models for the image proper-
ties of regions.

There has been previous work on using colour cues
to detect structures such as roads. A successful exam-
ple was demonstrated by Crisman for road tracking [4].
Her work, how ev er, continually estimated colour mod-
els for roads interactiv ely and did notattempt to do
statistics of road, or non-road, properties over a large
dataset. Other work on the use of colour cues for rec-
ognizing speci�c objects includes Swain and Ballard
[11]. In addition, there have been successful models
of texture obtained using the Minimax Entropy learn-
ing theory [13]. These w orks,how ever, have not ex-
plored the use of domain speci�c statistical knowledge
for segmentation. A recent learning method [8] is very
di�erent from our approach and make use of reinforce-
ment learning with high-level feedback.

Our recent work studied the e�ectiveness of di�er-
ent edge cues for segmenting the Sowerb y dataset [6].
This study measured the Cherno� information pro-
vided by speci�c edge cues and demonstrated that the
e�ectiveness of these cues was approximately constant
over the en tire database. The w orkin this paper is

based on a similar methodology but is more general.
Instead of tw o classes { edge versus non-edge { there
are six. Moreover, in addition to Cherno� information
w e also evaluate the false positive and false negative
rates of classi�cation.

Figure 1: F our typical images from the Sowerby
dataset. These images contain a variet y of urban and
rural scenes.

3 Statistical Basics
This section provides the statistical basis of our ap-

proach. It describes how, for any set of �lters, we can
obtain an empirical join tprobability distribution for
their responses to the six classes. From these learned
distributions we apply Bayesian probability theory to
determine which class a �lter response is likely to be
a member of. This is evaluated in terms of the false
positiv es and false negatives for each class (expressed
in terms of a confusion matrix).

In addition, w euse a more sensitive measure to
address the related question of which class a set of
samples is most likely to be in. This is evaluated us-
ing the Cherno� information, which determines the
asymptotic error rates, see [3].

3.1 Determining empirical probability
distributions.

Any class cue (or combination of cues) is repre-
sen ted by a �lter �(:), which can be evaluated at
eac h position in the image. �(:) can be a linear,
or non-linear �lter, and can ha vea scalar or vec-
tor valued output. F or example, one choice is the

scalar v alued �lter
�
�
�~r(:)

�
�
� for which �(I(x)) =

�
�
�~rI(x)

�
�
�.

Another possibility is to combine edge �lters at dif-
feren t spatial scales to giv e a vector valued output

�(I(x)) = (
�
�
�~rG(x;�1) � I(x)

�
�
� ;
�
�
�~rG(x;�2) � I(x)

�
�
�),

where G(x;�) is a Gaussian with standard deviation
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� ;and � denotes convolution. Y et another choice is to
apply �lters to the di�erent colour bands of the image.
We will develop the basic theory at an abstract level
so that it can apply directly to all these cases.

Having chosen a �lter �(:) we have to quantize its
response values. This involves selecting a �nite set
of possible responses fyj : j = 1; :::; Jg. The e�ec-
tiveness of the �lter will depend on this quantization
scheme so care must be taken to determine that the
quantization is robust and close to optimal, see sec-
tion (5). The �lter is run over the image and its
empirical statistics (histograms) are evaluated for the
operator's responses to the six di�erent classes. These
histograms are then normalized to give six conditional
distributions P (yj j�), where � denotes the six classes
fedge; vegetation; air; road; building; otherg.

F or example, for the �lter�(:) =
�
�
�~r
�
�
� we would an-

ticipate that the probability distribution for P (yj j� =
air) is strongly peaked near yi = 0 (i.e. the sky
tends to have small image gradients), while the peak
of P (yj j� = edge) occurs at larger values of y (i.e. the
image gradient is likely to be large at edges of objects).

It is important to ensure that we have enough train-
ing data so that we do not overlearn the data, see [9].
This restricts us to using a limited number of �lters
(because the amount of data required grows exponen-
tially with the number of �lters used in our joint his-
tograms). We stress that use standard procedur esto
ensur ethis such as learning the distributions on half
the dataset and evaluating them on the other half.

We must also determine prior probability distri-
butions fP (�)g for the six classes. These are esti-
mated by the empirical number of image pixels in
eac h class computed over the en tire dataset. F rom
these t wo types of distributions (conditional and pri-
ors) w e construct the Bayesian decision rule: label
a pixel x as lying in class ��(x), where ��(x) =
arg�=maxP (yj(x)j�)P (�). Classi�cations, confusion
matrices, and false positiv eand false negative error
rates for this rule will be giv en in section (6) for a
set of di�erent �lters. In addition, w ewill consider
the classi�cation when w e set the prior class prob-
abilities to be uniform, and hence classify the pix-
els by the maximum likelihood estimator ��(x) =
arg�maxP (yj(x)j�) (this may be a useful strategy
when some classes are very rare and hence the \data
driven prior" biases strongly against them).

3.2 Asymptotic Error Rates

We may also want to determine whether a set of
samples is more likely to be in one class or another
(i.e. all members of this set are assumed to be in a
single class). This issue is important if we intend to

group a set of pixels using spatial information. It is
a more sensitive measure than the false positive and
false negative classi�cation rates. It is useful for those
region classes for which the false positiv eand false
negative rates are poor.

The optimal test for determining whether a
set of samples ~y = y1; y2; :::; yN comes from
classes � or � is giv en by the log-likelihood
test (see the maximum likelihood-Pearson lemma
[3]). It can be sho wn [3] that, for su�ciently
large N , the expected error rate of this test de-
creases exponentially by e�NC(P (yj�);P (yj�)) where
C(P (yj�); P (yj�)) is the Cherno� Information [3] be-
tw een class� and � de�ned by C(P (yj�); P (yj�)) =
�min0���1 logf

P
y P (yj�)

�P (yj�)1��g:
Thus to determine the asymptotic error rates, as

well as the individual pixel error rates, w ecompute
the Cherno� information betw een di�erent classes (as
functions of the choice of �lters).

4 The Filters
We concentrated on combinations of four basic �l-

ters. These are the intensit y itself (for colour seg-
mentation), the gradient, the Nitzberg edge detector
[7], and the Laplacian of a Gaussian. These �lters
are examined in both the intensity and colour regimes
and at a variet y of di�erent scales. Multiscale is per-
formed by varying the parameters � of the Gaussian
con volutions and combining single scale responses into
a vector �lter. (In the approach followed in this pa-
per, the optimal combination arises naturally, subject
to the quantization procedure we use.) It is straigh t-
forward to couple di�erent �lters to obtain a vector
valued �lter and to determine the additional informa-
tion convey ed b y combinations of elementary �lters.

Our results show edthat the most e�ective �lters
w ere thein tensit y (i.e. colour) and the Nitzberg op-
erator [7]. Colour is, not surprisingly, a very e�ec-
tive cue for distinguishing between di�erent regions.
The Nitzberg operator w asoriginally designed as a
corner detector and it turns out to be an e�ective
operator for distinguishing between regions of di�er-
ent textures. More precisely ,the Nitzberg operator
involves computing the matrix N(x;�) = G(x;�) �

f~rI(x)gf~rI(x)gT where T denotes transpose. The
output is the tw o-dimensional vector consisting of
both eigenvalues (�1(x;�); �2(x;�)).

The gradient and Laplacian of Gaussian �lters were
less e�ective. They might be more e�ective if su�cient
data w ereavailable to enable us to train them at a
larger number of di�erent scales. Similarly, we lac ked
su�cient data to reliably train �lterbanks of Gabor
�lters (see technical report for details).
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5 Stability
An important practical issue of our approach is to

dev elop an appropriate quantization for the distribu-
tions. There is a trade-o� involved. If the number of
quantization bins is too small, then the results we ob-
tain will be crude. By contrast, if we have too many
quantization bins, then the resulting probability dis-
tributions (and measures deriv edfrom them such as
Cherno� information) may over�t the data. At a more
abstract level, w e arefaced with the danger of over-
�tting the data, which is a common problem inherent
to all learning procedures [9]. (As a practical concern,
the bigger the number of bins the larger the amount
of computations required and the greater the memory
requirements).

After experimentation and theoretical analysis (see
technical report) we settled on an adaptive quantiza-
tion scheme. It became clear that most of the reliable
information could be extracted using only 6 adaptive
bins for each dimension of the �lter (we emphasize that
this adaptation was performed over the entire dataset
and not for eac h individualimage). This enabled us
to perform statistics on up to 6 coupled �lters { which
requires 66 quantized bins.

6 Results on the Sowerby Database
6.1 Classi�cation and Confusion Matrices

We demonstrate the confusion matrix and the false
positiv e and false negative rates. This confusion ma-
trix, like our other statistics, is calculated over the
entire database of 100 images. Not surprisingly, the
best classes are road, air and vegetation. We see that
colour by itself, see �gure (2), is successful except
for edge detection and such non-homogeneous classes
as buildings (see section 6.3 for discussion), see �g-
ure (2) (colour is able to detect edges by combining
�lter responses at multiple scales { recall, for exam-
ple, that the Laplacian of a Gaussian can be approxi-
mated by the di�erence of tw o Gaussians at di�erent
scales). T exture is perhaps surprisingly successful us-
ing only the Nitzberg operator to measure it, see �g-
ure (3). Moreover, texture (using Nitzberg) is signi�-
can tly more e�ective than colour for detecting edges.

When colour and texture are combined with the
data driv enprior, see �gure (4), w eget the best re-
sults. Observe what happens if w euse the uniform
prior, see �gure (5). This is better at �nding build-
ings but w orse at everything else. It also �nds more
true edges in the image but also has more false posi-
tives.

6.2 Cherno� Measures

T o calibrate theCherno� measures, we calculated
them for the Geman and Jedynak road tracking ap-
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Figure 2: Colour at combined scales 2 and 4: Con-
fusion plot with data driv en prior. The top row
sho ws the probabilities, P (��j�), of the classi�-
cation �� when the true class is �. I.e. the
top leftmost panel sho ws P (��jedge) for �� being
fedge; vegetation; air; road; building; otherg. Observe
that the classi�cations of veg, air, r oad are o ver 90%.
The bottom row shows P (�j��) with similar conven-
tions. Observe that if a pixel is classi�ed as vegetation
then it has an over 80% chance of really being vegeta-
tion.

plication [5] (from the plots in their paper). This gave
a Cherno� of 0:22 nats, which was perfectly adequate
for their task of tracking roads in aerial images. In
our dataset, see �gure (6,7,8), observe that we attain
Cherno�s which are higher by almost an order of mag-
nitude. This suggests that classifying a set of pixels
in to classes will be highly successful. Observe, again,
that colour is relatively ine�ective at detecting edges.

6.3 Classi�cation Errors

On the whole, the Bayesian classi�cation using joint
texture and colour statistics is remarkably successful,
particularly considering we are using no spatial group-
ing at all. How ev er,w edid detect some systematic
biases.

Firstly, the second most frequent error occurred for
edges. This is hardly surprising since edges are no-
toriously hard to detect reliably . Moreover, most of
the errors consisted of confusing edges with vegetation
(and vice versa). This is to be expected because one
characteristic of vegetation is a high density of small
scale edges. Overall, the classi�cation rates and the
Cherno� information for edges are good and suggest
that a limited amount of spatial grouping will be su�-
cien t to detect most of them, see also [6]. We observe
also that edge-corners were often misclassi�ed as veg-
etation. This is also not surprising because texture
regions like vegetationwill also have a high density of
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Figure 3: T extureat multi-scale using Nitzberg de-
tectors: Confusion plot with data driven prior. Same
con ven tions as previous �gure.
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Figure 4: Colour and T exture: Confusion plot with
data driven prior. Same conven tions as previous �g-
ure.

corners. Again, w eexpect that spatial grouping will
be required to distinguish betw een corners due toveg-
etation and those due to edges.

It does w ellon vegetation. There is some confu-
sion withedges andcorners, see previous paragraph.
Also vegetation at a distance tends to get smoothed
out and turns blue-grey. This a�ects its texture and
colour properties and can cause it to be misclassi�ed
as road. Some texture on buildings can get misclassi-
�ed as vegetation.

A iris the most easily classi�ed class. Smooth bright
objects, as in buildings and w ater on the road are
sometimes seen as air. V ery smooth road areas (more
ob vious with equal prior!) are sometimes seen as air.
Dark thunderclouds are sometimes seen as road.

R oad can also be reliably classi�ed (with data
driv en prior). But roads in the far distance, where
they are very smooth, can be classi�ed as air. The
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Figure 5: Colour and Texture: Confusion Plot with
uniform prior. Same conventions as previous �gure.
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Figure 6: Colour at combined scales 2 and 4 :
Cherno� Information in nats. For example, left-
most panel sho ws C(P (yjedge); P (yj�)) for � =
fedge; vegetation; air; road; building; otherg. Note
that C(P (yjedge); P (yjedge)) = 0.

most common error is that buildings with 
at surfaces
are often seen as roads, see �gure (9) (about 1/2 {
unless the building prior is boosted).

Building is not a good class. A subclass { like
stonework { seems to be a better class since they have
homogeneous regular texture which di�ers from the
less-structured texture in vegetation. Buildings come
in many styles and should be split into subclasses.
Moreover, some speci�cally building-like features {
suc h as straight-lines and right-angles { can not be
easily detected by the �lters w eare applying. Our
�lters are local and only well suited for extracting ho-
mogeneous image properties.

The Other class is also poorly de�ned. It should
ideally be split up into subclasses suc h as cars. A t
present, cars are partially classi�ed as other. Parts
like the windshield and bright smooth areas are clas-
si�ed as air. Areas near tail-lights, license plate, with
high densit yof corners are often labelled vegetation.
Noticeably, long straigh tthin objects { such as thin
tow ers and, very occasionally, road curb boundaries {
are labelled other.
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Figure 7: T exture with Nitzberg at scale 2: Cherno�
Information. Same conven tion as previous �gure.
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Figure 8: Colour combined with texture: Cherno� In-
formation. Same convention as previous �gure.

7 Results on the San F rancisco

Database
The results for the San F rancisco database are

broadly similar. We investigated the classes road, air,
vegetation, car, building, and other. We applied simi-
lar �lters to those used for the Sow erb y database.

As before, w ecalculated the confusion plots with
the data driven priors and uniform priors. It should
be stressed that for this dataset the data driven priors
can be misleading. This is because the images are not
fully segmented and the statistics for eac h class are
obtained by samples which are interactiv ely obtained.
This means that the default class, other, con tains
many pixels which might best be assigned to other
classes and hence its data driven prior is far larger
than it should be. Moreover, certain classes such as
vegetation are only sparsely represented in the images
and hence their data driven priors bias against them.
This e�ect can be seen in �gures (11,12); it seems that
the uniform prior yields better results. Overall, the
confusion plots show that the cues are very e�ective,
yielding roughly similar success rates as the Sow erb y
dataset. The cues are most e�ective for the road, air,
and vegetation classes. There is a sligh tdecline due
perhaps to the lack of an \edge class".

We show some typical San Francisco images in �g-
ure (13) withtheir segmen tations, usingthe uniform
prior, in �gure (14).

8 Summary and Conclusions
Overall, w ew ere surprised at ho w e�ective sim-

ple features could be in both domains. Using simple

air road bldg othervegedg

Figure 9: Observe (upper panel) that the buildings can
be interpreted as roads when the data driven prior is
used. If the prior for buildings is increased so as to
equal that of road, then buildings are located more
e�ectively (lo w er panel).(Stone walls, as in the right
of the �gure, are classi�ed as \building".)See key, at
top, for greyscale labelling conven tions.

colour and texture �lters we were able to get high clas-
si�cation rates into three of the six main classes (road,
air, and vegetation). The classi�cation is very fast be-
cause it is done by a simple loop through the image.
This suggests that domain speci�c statistics are pow-
erful for segmentation even without requiring spatial
grouping. These domain statistics complement exist-
ing segmentation techniques and, when augmented by
spatial grouping, should yield highly e�ective segmen-
tations.

We have started comparing the statistics of the six
classes betw een the tw o domains.Our preliminary re-
sults show some broad similarities but also some sig-
ni�cant di�erences. Certain texture features, for ex-
ample, seem to be surprisingly similar between the do-
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Figure 10: Examples of segmentations on typical
Sow erby images. Same greyscale conven tions as previ-
ous �gure. The original images are shown in �gure (1).
Observe the e�ectiveness of the segmentations.

mains. On the other hand, not surprisingly, the air in
the San Francisco database has di�erent colours than
the air in the So werby images (blue versus grey). In
�gure (15) we train on halfthe dataset and ev aluate
on the other half to ensure that we are not over�tting
the data.

Finally, w eencourage the dev elopment of similar
segmented databases which can be used for statistical
performance analysis of visual algorithms [1].
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Figure 11: Colour and T exture: Confusion plot for
San Francisco dataset with data driven priors (this is
misleading). Same conven tions as �gures 2-6.Observe
that the data driven prior biases against \vegetation"
and in favour of the default class \other".
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Figure 12: Colour and T exture: Confusion Plot for
San Francisco dataset with uniform prior. Same con-
ven tionsas previous �gure. The uniform prior im-
pro ves the assignment to classes suc h as \vegetation".
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Figure 13: Examples of San F rancisco images. See
follo wing �gure for their segmentations.
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Figure 15: Checking for over�tting on Sowerby. The
top two panels show the confusion plots trained and
evaluated over the en tire dataset. The middle tw o
and bottom tw opanels sho wthe confusion matrices
where the conditional distributions are learnt on half
the dataset (randomly chosen) and evaluated on the
other half. Colour and texture �lters used.
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