Edge Detection and Simple Semantic Segmentation

A.L. Yuille (JHU)

Edge Detection and (simple) Semantic Segmentation as examples of low-level vision.

Why do we care about edges?

- A Line Drawing is simple representation of the image (far fewer bits than a normal image).
- They are often sufficient to interpret the entire image (caveats).
- The Line Drawing is composed of edges an "edge map".

What Does the Line Drawing Represent?

- They represent the boundaries of objects.
- They represent interior edges of objects.
- They represent texture edges.

 Mooney images – a caveat: edges alone are not sufficient. Black and white helps.

But how can we find edges?

- Edge detection applies local operations (filtering) to images in order to detect edges. Local low-level vision.
- Typically look at a local image patch 3x3 pixels, or 8 x8 pixels and decide if there is an edge or not.
- This is binary classification task machine learning/statistics.

(b) Image of the matrix (150×100)

Typically edges occur at places where the intensity gradient changes.

• Idealized edges: Images I(x). Derivative of Image dI(x)/dx

But Images are much more complex than this simple picture

- The intensity gradient can be very small at the boundaries of an object. This is surprising to humans since we use context to interpret images. This context can be non-local or high-level (e.g., recognition), later in this course.
- Fox. Local edges threshold gradient. Steeple Image (ambiguous)

How to Perform Edge Detection.

 Classic approach – define an ideal model of an edge and obtain an optimal edge detector (Canny 1986).

Treat Edge Detection as a statistical machine learning problem.
Requires a dataset with ground truth (positions of edge specified).
(Konishi, Yuille, Coughlan, Zhu 1999).

Sowerby Dataset: Groundtruth.

Figure 5. Upper Panels: the data images. Lower Panels: the groundtruth edge maps

Statistical Edge Detection

- Konishi, Yuille, Coughlan, Zhu. CVPR. 1999.
- Learn conditional probability distributions of image features conditioned on whether there is an edge or not (on-edge, off-edge).
- Use log-likelihood ratio test to detect edges.
- 1. Probability distributions. 2. Image. 3. Ground Truth. 4. Output.

Different Datasets.

Hard (Sowerby) and Easy (S. Florida)
Datasets.

Soweby consists of outdoor images. Much texture and vegetation.

South Florida consist of indoor images. Very little texture.

Semantic Segmentation: What else can you classify locally?

What about "sky", "vegetation", "water"?

• These are roughly homogeneous. E.g., all parts of sky are similar.

Colour and Texture.

Label Regions Sowerby

- Konishi and Yuille. CVPR. 2018.
- Output examples.

Label Regions: San Francisco

