
Vision as Bayesian Inference

One strategy to learn decision rule

: Learn distributions
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is typically larger on edges than not on edges

But, sometimes           is small on edges and big not-on-edges
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(Konishi et al., 1999, 2003)

Parametric Distribution? (e.g. Gaussian)
or non-parametric?          (e.g. histogram)
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Learn

Note: Memorization and Generalization
• Learn theses probability distribution using only part of the dataset
• Evaluate/test on other parts of the dataset – testing dataset

This is ensure generalization and present over learning (Machine learning)

Decision Rule: 
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T: threshold 
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Changing the threshold affects:
i. The false positives – number of image pixels wrongly decided to the 

edges
ii.The false negatives – number of image pixels which really are edges, 

but are decided to be non-edges

What threshold to use? Depends on task
• Impossible to find a threshold which gives perfect results (i.e., has no false positive 

and no false negatives)

• Best not to make hard decisions too early 

• Use context and higher level information to decide
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Comparisons Canny vs.

Performance depends on filters used

If                            , then performance is similar

But for more sophisticated filter, then                                  is much better
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EG If                                             , where           is a smoothed image. 
i.e., combine information at different scales

Problem: if we use more sophisticated filters, then we need more 
data to learn

( )( ) ( ) , ( )f x I x G I x= ∇ ∇ ∗ G I∗



Vision as Bayesian Inference

Note: If you only use         filter then results are disappointing
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 Thresholding reduces to thresholding

(so we rediscover the Sobel edge detector)
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Datasets: Problems and Perils

Dataset Bias: Is the data representative of the set of natural images?
Experimental Design

EG South Florida dataset –contains images with little texture
 edge detection is easy

Sowerby dataset – contains images with a lot of texture (e.g. vegetation)
 edge detection is hard

An edge detector trained on South Florida will perform badly on Sowerby

An edge detector trained on Sowerby will perform well on South Florida

 South Florida dataset is biased
Lecture 02-23
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Labeling bias where does ground-truth come from?

In Berkeley BDS datasets, 5~6 students label each image independently

But, not all labelers agree
“Strong Edges” are labeled by all 5 students

“Weak Edges” are labeled by 1 student only

Psychophysics experiments (X. Hou et al., CVPR 2014) show that weak 
edges are poorly defined
 Problematic to use weak edges for training and testing
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Summary

• Use visual cues for edges to turn it into a classification task. 
- Apply S & ML techniques

• Use datasets with ground-truth to train/learn and evaluated 
different methods
- Konishi et al., Malik et al., Dollar et al.

• Edge detection is impossible locally (context helps)
- Balance false positives and false negatives
- Typically better to have few false negatives on more false positives
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Extend to other vision tasks / What else can we do locally?

Lecture 02-26

( )P ( ) |f x s

( )ˆ arg max ( ) |s P f x s=

(Konishi & Yuille, 1999)

EG Classify an image pixel as {sky, vegetation, road, 
other} 

Dataset: Sowerby
Strategy: same as before
Learn 

s is a label  e.g., sky, vegetation, etc.
f(x): filters

Classify x by 

sky

road

vegetation
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