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The goal of this paper is to present a new basic model for the joint density function
for a broad class of spatial and time-series data. As evidence that this model is indeed
useful in practical problems, an application to image denoising in the presence of textures
will be explained.

Section 1 discusses the joint density distribution for pixel intensities in naturally occur-
ring images. This reßects an experimental discovery made by examining pixel intensities
for a variety of naturally occurring images�that the pixel intensities in many images have a
property I call Differentially Laplacian. The idea here is to consider not just differences
between measurements, but all linear combinations of measurements where the coefficients
add up to 0�when the data points are adjacent, these correspond to discretizations of lin-
ear differential operators, but it is fruitful to consider such differences for all data points
in k × k sub-blocks of the image for k of modest size. The invertibility of the Radon
transform uniquely speciÞes the density function of a Differentially Laplacian collection of
random variables once one knows the autocorrelation function. Further experimental data
describes how the autocorrelation between pixel intensities in many images dies off as a
function of the distance d between them�this is very often of the form (1+γd)−α. Although
there are many much more sophisticated statistical models for speciÞc textures, the model
given here has a wide range of applicability�speciÞc images of plants, lava, galactic clus-
ters, bacteria, forests, satellite images of craters and cities support it. Moving beyond the
world of image processing, time series data on hourly ocean temperatures, digital elevation
models of the Rocky Mountains and Australia, and Icelandic daily precipitation also offer
a good Þt with this relatively simple model.

In section 2, it is shown that the 1-dimensional case of the TV algorithm of Rudin-
Osher-Fatemi is equivalent to taking the maximum likelihood estimate for denoising an
image with added white noise under the assumption that the differences between adjacent
pixel intensities are distributed by a Laplacian density and that these differences are inde-
pendent of one another. The Þrst assumption is experimentally accurate, while the second
of course is not�it is nevertheless an excellent Þrst approximation to reality.

Section 3 uses the information about the joint pixel intensities in section 1 to create
a denoising algorithm that improves upon the TV algorithm for images with texture.

The overall approach taken in this paper might be characterized as �empirically
Bayesian.� I was introduced to Bayesian statistics through my work as an organizer of
the program in Functional Genomics at the Institute for Pure and Applied Mathematics.
I have also beneÞted from very useful conversations with my colleagues Stan Osher and
Tony Chan, who introduced me to this collection of problems.

* Research partially supported by the National Science Foundation
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There is a sizable literature on statistics of natural images, with seminal work of
Donoho, Huang, Mumford, Ruderman, Simoncelli, Yuille and Zhu among others. The
autocorrelation dieoff function is discussed in [L-M],and its tendency to die off as a power
law has been noted by several authors. I have not been able to determine from the
literature who Þrst noted that the difference between adjacent pixel intensities frequently
has Laplacian density. The statistics of wavelet blocks have been studied by several authors,
notably Simoncelli, Mumford and Huang, and the tendency of wavelet coefficients to have
Laplacian statistics has been noted; a perspective on these closest to this paper is that
of [Hu]. The joint density of pairs of wavelet coefficients is considered by Simoncelli and
Huang. Two papers with a good survey of the literature on this are [L-P-M] and [S-L-S-Z].
There is likewise a large literature on image denoising. Soft thresholding goes back to
[D-J-K-P]. A paper of Hyvärinen [H] uses maximum likelihood estimates in the context of
the Lemma of section 3. However, his overall thrust is in the direction of using supervised
learning and independent component analysis. Huang [Hu] also discusses using a maximum
likelihood estimate for denoising. Using Laplacian statistics for predicting pixel intensities
from those of their neighbors was used, among other places, for lossless image compression
in [W-S-S]. The new contributions in this paper�although all have antecedents�are the
joint density model proposed in section 1, the maximum likelihood explanation of the TV
algorithm, and the application of the density model in section 1 to image denoising.

1. Joint Density Function of Pixel Intensities in Naturally Occurring Images

This section, based on experiment, proposes a simple model for the joint density func-
tion of all differences of pixel intensities in a certain class of images. For the applications
we have in mind, it is sufficient to get a model which works well for the inter-relationships
of pixel intensities in small sub-blocks (e.g. 5 x 5). Thus a practical embodiment of the
joint density function we have in mind is to divide an image into k × k sub-blocks, and
then look at the histogram of the k2 pixel intensities for those blocks within a given image.
What we claim is that when we do this, for many images the outcome is modelled very
closely by a single very simple model having one new parameter plus a scale factor beyond
the variance of the intensity of a single pixel. This model will then be shown to work well
for some other types of data.

The class of images we are interested in are naturally occurring images. We want to
begin by studying images which are not composites of disparate subimages, each having
a different character, but rather images which are uniform over the entire picture and are
somehow governed by a single �regime��the foliage of a tree, a forest, a Þeld of lava, a
galactic cluster. If we Þnd a simple model which describes these individual images well,
we can then segment a more complex image into pieces that are well-described by the
model. A number of things should be ruled out�images with large areas in shadow, or
water and sky, and artiÞcial or man-made objects. The model is so highly speciÞc that it
is remarkable that any images at all are Þtted by it, much less the wide class evidenced in
this paper.

The experimental observation is the following:

OBSERVATION. Break an image into k × k sub-blocks, and consider a Þxed linear
combination of the k2 pixel intensities where the coefficients of the linear combination add
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up to 0. For many naturally occurring images, this has a Laplacian density function for
every such linear combination and all k of modest size.

DEFINITION. A collection X1, . . . ,Xn of random variables will be said to be Linearly
Laplacian if every linear combination XA =

!n
i=1 aiXi has Laplacian density.

DEFINITION. A collection X1, . . . ,Xn of random variables will be said to be Differ-
entially Laplacian if every linear combination XA =

!n
i=1 aiXi has Laplacian density

provided
!n

i=1 ai = 0.

We may rephrase the observation by saying:

OBSERVATION. For k of modest size, the pixel intensities for the pixels in k × k
sub-blocks of an image constitute a Differentially Laplacian set of random variables.

REMARKS:
1. A Laplacian random variable is one whose density function is described by the
absolute exponential density

f(x) =
β

2
e−β|x|.

Such a random variable has mean 0 and variance 2/β2. A Laplacian density and its log
look like:
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2. The observation should be interpreted in the sense that we take k × k sub-blocks of an
image, take linear combinations of pixel intensities on the sub-block whose coefficients add
up to 0, and then investigate the distribution of the values of this random variable over a
decomposition of a large image into k × k blocks.
3. For the difference in intensities between adjacent pixels, the fact that the density tends
to be Laplacian has been noted by other observers (see [H-M]).
4. Unlike Gaussian random variables, for which the sum of independent Gaussian random
variables is also Gaussian, a sum of independent Laplacian random variables will not be
Laplacian. Thus the property observed is quite unexpected�for example, the joint density
function of three adjacent pixel intensities X1,X2, X3 is so constructed that not only the
differences X1 − X2 and X2 − X3 are Laplacian random variables, but also their sum
X1 −X3 is Laplacian, as is indeed any linear combination of X1 −X2 and X2 −X3.
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Given an A × B image, a rescaling of the image is obtained by breaking the image
into a× b sub-blocks and averaging the pixel intensities over each sub-block to obtain an
A/a× B/b image. We have the highly suggestive fact that being Differentially Laplacian
is inherited under rescaling:

FACT. If an image is Differentially Laplacian, then any rescaling of the image is also
Differentially Laplacian.

This fact follows automatically from the fact that any linear combination of pixel
intensities for the rescaled image is a fortiori a linear combination of pixel intensities for
the original image, and the property of the coefficients adding up to zero is inherited as
well.

Once one has a Differentially Laplacian collection of random variables, the one re-
maining piece of information is how to predict the parameter β above for all of the XA.
An equivalent piece of information is what I call the autocorrelation dieoff function�
essentially the same information as what geostatisticians call the variogram�deÞned by:

DEFINITION. Let Xij denote the pixel intensity at the (i, j) position of an m×m sub-
block of an image. Assume that the joint density function is invariant under translations
and isotropic, so that Corr(Xij ,Xkl) depends only on d = distance((i, j), (k, l)). Then the
autocorrelation dieoff function is

ρ(d) = Corr(Xij ,Xkl) where d = distance((i, j), (k, l)).

REMARK: The assumption of isotropy is not accurate in images with a �horizon,� where
height in the picture corresponds to the object tending to be further away. Our model
works with non-isotropic autocorrelation dieoff functions, and our denoising algorithm does
not assume isotropy.

OBSERVATION. In many images, the autocorrelation dieoff function tends to behave
as

ρ(d) = (1 + γd)−α

for some α, γ > 0.

REMARK: This autocorrelation dieoff function is rescaleable up to atomic scale, mean-
ing that for large values of d, it rescales but deviates from this for small values of d. If
would rescale perfectly if we used γd−α; the 1 is inserted in order to make the correlation
come out to be 1 when d = 0.

Now consider for a set of random variables X1, . . . ,Xn the covariance matrix

B = (bij); bij = Covariance(Xi, Xj).

An easy computation shows:

FORMULA. A collection of random variables X1,X2, . . . , Xn with density function
f(x1, . . . , xn) has a linearly Laplacian density if and only if"

Rn

f(x1, . . . , xn)e
i(ω1x1+···+ωnxn)dx1dx2 · · · dxn = 2

"ω"2B + 2
,
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where

"ω"B =
#
ij

bijωiωj .

Note that this speciÞes the Fourier transform of the density function f , and hence
determines f . I do not expect that f will have a nice closed-form expression, which
perhaps accounts for this type of joint density function not having been discovered before.
One should integrate the inverse Fourier transform by integrating Þrst normal to the linear
spaces

!
i ωixi = constant. Doing this, if one uses the eigenfunctions and renormalizes

so that the parameters β are all 1, one sees that the density function is a function of the
distance r from the origin, and for n ≥ 2,

f(r) = constant

" ∞

0

ρn−2e−r
√
1+ρ2dρ,

where the constant is chosen so that the total densityis 1. For n odd,this has a simple
closed form�for example, for n = 3,

f(r) =
1

8π
(
1

r2
+
1

r
)e−r.

THEOREM. There is one and only one probability joint density function for Linearly
Laplacian random variables X1, . . . , Xn with a given covariance matrix B.

PROOF: This follows from the Fourier inversion formula.
For a set of variables X1, . . . ,Xn, if Y1, . . . , Yn−1 is a basis for the linear combinations

of X1, . . .Xn with coefficients adding up to 0, e.g. Yi = Xi+1 − Xi, then X1, . . .Xn is
Differentially Laplacian if and only if Y1, . . . , Yn−1 is linearly Laplacian.

FACT. If X1, . . . , Xn is Differentially Laplacian, then mean(Xi) is independent of i.

REMARK: This follows because the mean of the differences is 0 by deÞnition.
The difference between knowing a density function for the X�s and for the Y �s should

be viewed as follows: Just as for Brownian motion, we think of our particle as starting at
some Þxed point and then moving according the joint density for differences in position,
we should think of the pixel intensities as being given by a 2-dimensional Brownian motion
�of a different color� starting from some initial point and whose differences in intensity are
given by a linearly Laplacian joint density. Under this scenario, there is no preassigned
joint density for the pixel intensities Xij�rather, one should start at intensity 0, carry
out the process, and then add a constant to all of the pixel intensities. This constant is
estimated by the mean of the pixel intensities. For this reason, the mean, variance, and
autocorrelation dieoff function give a complete set of invariants of the process.

To complete the discussion of images, we brießy mention what happens for color
images. If XR

ij , X
G
ij , X

B
ij are the pixel intensities at position (i, j) for the red, green

and blue channels repsectively, then we have the following variant of being Differentially
Laplacian:
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OBSERVATION. The random variables

XA =
#
ij

(aRijX
R
ij + a

G
ijX

G
ij + a

B
ijX

B
ij )

have a Laplacian density provided#
ij

aRij = 0;
#
ij

aGij = 0;
#
ij

aBij = 0.

Although we will not develop this further in this paper, this observation is crucial in
carrying out a color version of the denoising algorithm of section 3.

A Þnal comment is that there has been a very fruitful study of 1/f -noise and 1/f -
Brownian motion, arising especially from the work of Mandelbrot [M]. The analogue of
Brownian motion discussed here differs from 1/f -Brownian motion in two ways. First,
the differences are Laplacian rather than Gaussian. Secondly, and more importantly, 1/f -
Brownian motion is a class of stochastic processes, rather than a single speciÞc stochastic
process. In essence, 1/f -Brownian motion speciÞes the density of X(s)−X(t) for all s, t
as being Gaussian with variance a power of |s− t|. One might complete this by specifying
the density of all linear cominations#

i

aiX(ti) whenever
#
i

ai = 0.

These linear combinations do not have the same physical meaning as differences do, but as
is indicated by the results in this paper, they are useful in describing the joint density func-
tion. Some natural phenomena will not have this additional property, but I suspect that
many will. For ordinary Brownian motion, consideration of linear combinations is unnec-
essary, since independence guarantees being Differentially Gaussian, i.e. having Gaussian
density for linear combinations summing to 0. The Differentially Laplacian property with
a given autocorrelation dieoff function allows us to specify a unique 2-parameter family of
motions. The claim of this paper is that pixel intensities for many images, and indeed many
other types of spatial and time-series data are described by this Differentially Laplacian
variant of Brownian motion.

This completes a description of the theory behind the model being proposed; applica-
tions of the theory will appear in sections 2 and 3. The remainder of this section is devoted
to empirical evidence supporting the claim that for many images and several other types
of data, the model of Differentially Laplacian random variables with autocorrelation dieoff
function (1 + γd)−α.

I will show two types of data in favor of at least some images having the Differentially
Laplacian property. One can choose an image and a k × k matrix A, and then construct
the histogram of XA for that image. A more systematic procedure is the following: Choose
a number k and decompose the image into k×k blocks. Let V be the (k2−1)-dimensional
space of linear combinations of pixel intensities on a k × k block with coefficients adding
up to 0. If A ∈ V , deÞne a quadratic functional by

"A"2 = Var(XA),
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or equivalently a positive-deÞnite inner product on V by

< A,B >= Cov(XA,XB).

We obtain k2 − 1 eigenfunctions A1, . . . , Ak2−1 of the k × k block for this functional. We
can then look at the k2 − 1 random variables XA1 , . . . ,XAk2−1 and investigate whether
these are in fact all Laplacian random variables. This is a rather efficient way of getting a
lot of data at once, and much of our data will be for the 24 eigenfunctions of 5× 5 blocks
of various images.

We may summarize man of the observations and deductions of this section by:

OVERALL MODEL.
1. Let A1, A2, . . . , Ak2−1 be eigenfunctions of the autocorrelation inner product, and let
β1,β2, . . . , βk2−1 be the eigenvalues. Then the joint density function is

(constant) · f(A
2
1

β21
+ · · ·+ A

2
k2−1
β2k2−1

),

where

f(r) =

" ∞

0

ρn−2e−r
√
1+ρ2dρ.

2. The most common values of the βi are the eigenvalues of a symmetric form <<,>> on
V of the form

<< A,B >>=
#
ijkl

AijBkl(1 + γ((i− k)2 + (j − l)2).5)−α

relative to the symmetric form

< A,B >=
#
ij

AijBij ,

i.e. the solutions of
det(<<>> −β <>) = 0.

The point here is that any Differentially Laplacian density on k× k blocks must have
the form in the Þrst part of the model for some set of βi, and that the observed form
that the autocorrelation dieoff function takes makes the second part of the model the most
likely�however, any choice of autocorrelation dieoff function is compatible with the Þrst
part of the model. The example given in this paper show that the Þrst part of the model
is applicable to data from a wide range of natural images, and also somedigital elevation,
ocean temperature and precipitation data. It is my expectation that this model will be of
wide applicability for many types of time-series and spatial data. Part 2 of the model is
also widely applicable, although there are cases where 1 holds and 2 does not.

For a time series, one can break it up into blocks of size k and do the same procedure,
getting k− 1 eigenfunctions. We will do several examples for time series data with k = 25.

The autocorrelation dieoff function will be computed for horizontal shifts up to 50
pixels wide on a variety of images, and also for the time series data introduced.
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The following image of a Mimosa tree, obtained from the web at
http://www.forestryimages.org/browse/detail.cfm?imgnum=3694005 is shown here:

Mimosa http://www.forestryimages.org/browse/detail.cfm?imgnum=3694005
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This is a good example from our perspective, because it is not a composite of disparate
images, each of a different character, but is rather uniform over the entire picture. The
histogram of the difference between horizontally adjacent pixel intensities is given by a
Laplacian distribution, i.e. f(x) = c

2e
−c|x|.This fact has already been noted [H-M]. Here

is a log histogram of the horizontal pixel differences for the Mimosa tree image, together
with the best Laplacian Þt:
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To rephrase the statement that the pixel intensities are Differentially Laplacian, if
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A = (aij) is a matrix, and Xij represents the pixel intensity at a position shifted i − 1
horizontally and and j − 1 vertically from a reference position, then the variable XA =!

i,j aijXij has a Laplacian distribution is
!
ij aij = 0. For example, for the matrix

A =
$−1 −6
3 0
5 −1

%
,

we get:
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If we use A = (−2 7 5 −8 −2 )t, we get
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We now investigate all possible shifts over a 5 × 5 matrix of possibilities. There is
a 24-dimensional space of possible linear combinations of pixel intensities over this 5 × 5
square. We look at the eigenvectors of the covariance matrix for these 24 combinations,
and get 24 eigenvectors. A picture of the 24 eigenvectors plus the 5 × 5 matrix with 1/5
in every position, which Þlls out the rest of the space of 5× 5 matrices looks like:
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Mimosa Eigenvectors
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If we break up the image into 5×5 blocks and look at the histogram for the coefficients
of the 25 eigenvectors, these are once again Laplacian. For example, the Þrst eigenvector
has log histogram:
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The second one has log histogram

-250 -200 -150 -100 -50 0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10



The others are similar. Log histograms for all 24 eigenvectors for several images are
in the appendix.

If we graph the log of the joint density function of these two eigenvectors, we get

Here is a contour plot:
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The axes have been adjusted by standard deviation. If these eigenfunctions were
indeed independent, we would expect to get the following picture of the bivariate density
and contour plot:
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Theoretical Bivariate Density for Independent Laplacian Variables
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If instead, linear combinations of eigenfunctions remain Laplacian, as the model pre-
dicts, we would have:

Theoretical Bivariate Density for Linearly Laplacian Variables
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In order to give what we hope is adequate evidence that many images are Differentially
Laplacian, in the appendix we give the Log Hist plots for the 24 eigenfunctions for 5 × 5
sub-blocks of a variety of images and also two digital elevation models, as well as for length
25 sub-blocks of selected time series of temperature and precipitation. We also give the
bivariate density and contour plots for all pairs of the Þrst 7 eigenvalues of one image.
We have evidence for sub-blocks as large as 30 × 30 for some images, but this cannot be
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presented here.

We now turn to the autocorrelation dieoff fucntion. It is useful to look at the corre-
lation of pixel intensities under a variable horizontal shift of from 1 to 49 units�we graph
the coorelation against the shift plus 1 for the Mimosa tree image.
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We compare it against (1 + shift)−.36. If we make a similar graph for 6 pictures, it
looks like
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We may combine all of the above experimental results into the following:
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OBSERVATION. The variable XA associated to the matrix A whose entries sum to 0
has a Laplacian distribution whose variance is given by

"A"2B ,

where B is a symmetric positive deÞnite metric on the space of such matrices given by the
formula

"A"2B =
#
iji"j"

caijai"j"(1 + γ
&
(i− i#)2 + (j − j#)2)−α,

where c, α and γ are parameters of the image (α = .36, γ = 1 in the case of the Mimosa
image).

I have investigated other natural images, and many of them have roughly similar
properties. Of course, none is an absolutely perfect match. I hope that I am very clear
that I am not claiming that this is a universal joint density function for pixel intensities
in images. This is not my intention. A famous dictum I learned from several statisticians
is that �All statistical models are wrong, but only some are useful.� I do Þnd it impressive
that a model as highly speciÞc as this one is valid, even to a range of 5 pixels, in even one
actual image, much less in many. For many images, one gets similar results for sub-blocks
ranging from 10×10 to 30×30 pixels. My hope is that this is a useful model for describing
at least one type of spatiotemporal variation�that which occurs in certain natural images.
In section 2, an extremely simpliÞed version of this model will be seen to form the basis
for the celebrated TV denoising algorithm of Rudin-Osher-Fatemi [R-O-F], and in section
3 a more faithful way of simplifying the model will lead to a highly effective denoising
algorithm for natural images.

There have been a number of earlier investigations into the statistics of natural images.
The fact that adjacent pixel intensities are given by a Laplacian density is well-known,
and I am not sure who discovered it Þrst. There was some preliminary investigation by
Mumford of the joint density of two pixel diferences. I have not seen the observation that
linear combinations of pixel differences always have a Laplacian density, and relating the
parameters of the Laplacian densities using the formula for "A"B .

2. A Statistical Explanation of the TV Algorithm of Rudin-Osher-Fatemi

The discussion in section 1 was empirical in character, based on observation of a
particular set of images. It represents an attempt to extract a comparatively simple model
from a complex situation. In this section, we enter the realm of Bayesian statistics, armed
with the empirical knowledge gained in the Þrst section.

To get started, let F be a space of functions with a probability measure dφ on F . We
will assume

F ⊆ {f :Λ→ R}
is a subset of the real-valued functions on a bounded grid Λ ⊂ Rn.

14



PROBLEM (Image Restoration Data with Gaussian White Noise�Bayesian
Formulation). Let X be a random variable on F chosen using the probability measure
dφ. Each value X(x) for x ∈ Λ is blurred by an independent Gaussian random variable
G(x) using a Gaussian distribution N0,σ with mean 0 and standard deviation σ. The image
we are given to process is a random variable F on F with intensity

Y (x) = X(x) +G(x)

at each x ∈ Λ. The problem is to restore X as closely as possible given that we know Y .

REMARK.

We think of Λ as the set of pixels and F as the set of possible image intensities we
might be called upon to restore. For a given image, X(x) is the true image intensity
at pixel x and Y (x) is the measured image intensity at pixel x. The signal in each
pixel is blurred independently by Gaussian noise, as might happen if the image were sent
pixel-by-pixel over a noisy line.

The probability density dφ on F deÞnes how likely a given collection of pixel intensities
is to appear as an image. Such a probability distribution on the set of all possible images
is known in the world of Bayesian statistics as a �prior.� We are then asking�among all
possible original pictures (this is the space F), which is the likeliest one to have given rise
to the observed picture? We take into account both the relative likelihood of the original
picture and the likelihood of that original picture giving rise to the observed picture when
subjected to digital Gaussian white noise with standard deviation σ.

Of course, such a prior is only an idealization, which might apply with reasonable
accuracy to some class of naturally occurring images, but which cannot apply in a pro-
crustean fashion to every image in existence. Section 1 gives the lineaments of a reasonable
prior to use. In applications, it is enough to have a prior for just part of the information
in a picture, e.g. for k × k sub-blocks of an image

We let Nµ,σ(x) denote the normal density function with mean µ and standard devia-
tion σ. We begin by noting that

P (Y (x) = y|X = g) = Ng(x),σ(y) = N0,σ(y − g(x)).

Thus

P (Y (x) = y and X = g) has probability density N0,σ(y − g(x))dφ(g) on F .

Similarly,

P (Y = f and X = g) has probability density
'
x∈Λ

N0,σ(f(x)− g(x))dφ(g)

= e
−
!

x∈Λ
1

2σ2
(f(x)−g(x))2

dφ(g).

If we enumerate Λ as a set by

Λ = {x1, . . . , xM},
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then if gi = g(xi), we write
dφ = Φ(g)dg1 · · · dgM .

Adopting the notation of statistical mechanics,

Φ(g) = Ψ(β)e−βE(g),

where β is a parameter that would be the inverse of the temperature, and Ψ(β) is the
partition function, chosen to make the total probability come out to be 1. Then

P (Y = f and X = g) has density function Ψ(β)e
−βE(g)−

!
x∈Λ

1
2σ2

(f(x)−g(x))2
dg1 · · · dgM .

We therefore have:

PROPOSITION. For the problem of image restoration to eliminate Gaussian white
noise, the maximum likelihood estimate for the true pixel intensity function g given the
measured pixel intensity function f is obtained by choosing g to minimize the functional#

x∈Λ

1

2σ2
(f(x)− g(x))2 + βE(g).

REMARK. If we are in n dimensions and normalizing the size of the mesh to be 1 for the
square lattice Λ, then we may replace this functional by"

x

(f(x)− g(x))2dx+ 2σ2βE(g).
The TV algorithm [R-O-F] consists of minimizing the functional"

x

(f(x)− g(x))2dx+ λTV (g),
where λ is a parameter to be chosen and TV is the total variation

TV (g) =

"
x

"*∇g"dx.
We therefore conclude that, up to a constant, we the TV algorithm is using the energy

E(g) = 2σ2TV (g) = 2σ2
#
x∈Λ

"*∇g(x)".

For simplicity, let us now take Λ to be 1-dimensional. Let

Λ = {x1, . . . , xN}
and gi = g(xi). We discretize

"*∇g(xi)" = (g(xi+1)− g(xi)).
Let yi = gi+1 − gi. Note that

dg1dg2 · · · dgN = dy1 · · · dyN−1dḡ,
where ḡ = (1/N)(g1 + · · ·+ gN ). The variable ḡ behaves differently than the others, and
we integrate it out to get a measure in dy1 · · · dyN−1. It follows that the measure on F
with ḡ integrated out is

dφ(g) = (
N−1'
i=1

β

2
e−β|yi|dyi).

We therefore have:
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PROPOSITION. For Gaussian white noise in one dimension, the TV algorithm is the
maximum likelihood estimate for the density which takes adjacent pixel differences Xi+1−
Xi to be independent and distributed according to a Laplacian or absolute exponential
density

β

2
e−β|x|.

The parameter λ is determined by β and σ by the relationship

λ = 2βσ2.

REMARK. It is possible to make a reasonable estimate of β and σ from the measured dis-
tribution of adjacent pixel differences in the observed image. If D is the random variable
representing pixel differences, from E(D2) and E(D4) one can solve for β and σ; alterna-
tively, one can Þt the convolution of a Laplacian and a Gaussian with unknown parameters
β, σ to the measured distribution of D. It is thus possible to determine the correct λ to
use. Determining in advance the right λ to use was an unsolved practical issue in applying
the TV algorithm.

The purpose of this proposition is not to claim that this prior probability distribution
using the total variation is accurate�it is not. The point is rather to bring to light what
assumptions underlie the TV algorithm, so that one can make improvements based on a
better knowledge of what the correct prior distribution is for the problem one is trying to
solve.

3. A Statistically-Motivated Denoising Algorithm

We Þrst note the following

LEMMA. Let X be a Laplacian random variable with parameter β and G a Gaussian
random variable with mean 0 and standard deviation σ. If X,G are independent and
Y = X +G, then the maximum likelihood estimate for X given the value of Y is

x =

 y − βσ
2 if y > βσ2;

0 if − βσ2 ≤ y ≤ βσ2;
y + βσ2 if y < −βσ2.

Note that this lemma is of course related to the concept of soft thresholding of Donoho et
al [D-J-K-P].
PROOF: We want to maximize

P (X = x|Y = y) = (const)e− (x−y)2
2σ2

−β|x|

or equivalently to minimize
(x− y)2 + 2βσ2|x|.

If x > 0, the derivative with respect to x is

2(x− y) + 2βσ2,
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so

x = y − βσ2.
If x < 0, one has x = y + βσ2. The result follows.
REMARKS:
1. It is worth noting that in the proof, what is needed is that the log density for X is β|x|.
For an algorithm based on this Lemma to work in practice, the log histogram of X needs
to be well-approximated by the log histogram of a Laplacian random variable. Inspection
of the log histograms in Section 1 and in the appendix conÞrm that this is indeed a good
approximation for many real images.
2. If instead X is a Gaussian random variable with mean 0 and standard deviation τ , and
G is as in the Lemma, then the maximum likelihood estimate is

x =
τ2

τ2 + σ2
y,

which is what comes up in a Wiener Þlter. This is the wrong thing to use when X is a
Laplacian random variable.

We now adopt the following assumptions about the joint density function of the pixel
intensities of our original image:
1. For k odd, the k2−1 eigenvectors of the covariance matrix of the image, taken as linear
combinations of the pixel intensities, have Laplacian densities.
2. These k2 − 1 random variables are independent.
3. The values of these eigenvectors are independent of each other on different, non-
overlapping k × k blocks.

Of these assumptions, the Þrst two are supported by the evidence in section 1. The
third assumption is false�it is made only to get us down to a workable situation. As k gets
large, it becomes more and more reasonable. In practice, we tend to take k to be 5, 7, or
9. The idea is that we make use of the fact that pixels comparatively nearby to each other
are strongly correlated in value, and since the noise added to each pixel is independent,
the noise tends to throw off the statistics of the k× k block, and thus can be detected and
removed.

We now assume that we are given Y = X+N , where X is the true image, N is white
Gaussian noise, with mean 0 and known standard deviation σ, independent for each pixel.
The object is to restore X from Y as closely as possible.
Step 1: Using the statistics of Y and σ, we obtain good estimates for the coefficients of
the k2 − 1 eigenvectors for the image X, and their variances. Under assumptions 1,2 and
3, we now know that they have independent Laplacian densities with known parameters.
(If we did not make assumption 3, we could do even better by exploiting the relationships
between nearby values, but we can do this anyway by increasing k.)
Step 2: Using these coefficients, we now compute the values of these linear combinations
of pixel intensities over each k× k block, and then apply the Lemma to make a maximum
likelihood estimate for what these coefficients were before the noise was introduced.
Step 3: The picture is now reconstructed by averaging the intensity at each pixel obtained
from the coefficients in Step 2, averaging over every k × k block containing that pixel.

18



One nice feature of this algorithm is that it is a one-pass algorithm and does not
require iteration. It scales linearly with the number of pixels.

Some examples of this algorithm using 5 × 5 blocks are contained in the appendix.
Because a certain level of noise can be hidden in the natural variation of an image, a
visually optimal denoising is produced by only going part of the way (i.e. using cβ instead
of β, where .25 ≤ c ≤ .5.) This has been done for the denoising examples in the appendix.
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APPENDIX: SUPPORTING DATA

Bamboo Log Histograms for 24 Eigenfunctions of 5× 5 Sub-blocks
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NGC6992 Log Histograms for 24 Eigenfunctions of 5× 5 Sub-blocks
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Forest Scene Log Histograms for 24 Eigenfunctions of 5× 5 Sub-blocks
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Lava Log Histograms for 24 Eigenfunctions of 5× 5 Sub-blocks
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Wildebeest Log Histograms for 24 Eigenfunctions of 5× 5 Sub-blocks
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Scorpion Log Histograms for 24 Eigenfunctions of 5× 5 Sub-blocks
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Digital Elevation Map Rocky Mountains 33-49N, 104-118W
5 Minute Grid Values

Log Histograms for 24 Eigenfunctions of 5× 5 Sub-blocks
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Horizontal Shift Correlations--33-49N, 104-118W (Rocky Mountains) 
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Digital Elevation Map Australia 16-31S, 125-146E

5 Minute Grid Values

Log Histograms for 24 Eigenfunctions of 5× 5 Sub-blocks
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Horizontal Shift Correlations--16-31S, 125-146E (Australia) 
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Hourly WaterTemperatures Station Location: 45 00�18�N, 124 05�06�W

Start Date=1975/01/28, Start Time= 09:00GMT
End Date=1975/05/16, End Time= 14:00GMT,Obs. Depth= 53 M

Log Histograms for 24 Eigenfunctions of 25 Hour Sub-blocks
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Hourly Water Temperature Shift Correlations
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Hourly WaterTemperatures Station Location: Station Location:45 00�12�N, 124 23�00�W

Start Date=1975/01/28, Start Time= 07:00GMT
End Date=1975/04/26, End Time= 16:00GMT, Obs. Depth= 206 M

Log Histograms for 24 Eigenfunctions of 25 Hour Sub-blocks
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Hourly Water Temperatures Horizontal Shift Correlation 
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Daily Precipitation, Hveravellir, Jan. 01, 1972 - Dec. 31, 1974

Source: Hipel and Mcleod (1994).

Log Histograms for 24 Eigenfunctions of 25 Hour Sub-blocks
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Salvina Bivariate Plots for all pairs of Eigenfunctions 1 to 7

5× 5 sub-blocks
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Salvina Bivariate Contour Plots for all pairs of Eigenfunctions 1 to 7

5× 5 sub-blocks
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Bamboo Original Image Bamboo Denoised
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Bamboo with 50 Added Gaussian Noise
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Bamboo Original Image Bamboo Denoised
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Bamboo + 100 Gaussian Noise Bamboo Restored Minus Original
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White-Tailed Deer Original Image White-Tailed Deer Denoised
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White-Tailed Deer with 20 Added Gaussian Noise
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Wildebeest Original Image Wildebeest Denoised
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Wildebeest with 50 Added Gaussian Noise
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NGC6992 Original Image NGC6992 Denoised
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NGC6992 with 50 Added Gaussian Noise
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NGC6992 Original Image NGC6992 Denoised
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NGC6992 with 100 Added Gaussian Noise
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Forest Scene Original Image Forest Scene Denoised
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