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Nonlinear total variation based noise removal algorithms* 

L e o n i d  I.  R u d i n  1, S t an l ey  O s h e r  a n d  E m a d  F a t e m i  2 
Cognitech Inc., 2800, 28th Street, Suite 101, Santa Monica, CA 90405, USA 

A constrained optimization type of numerical algorithm for removing noise from images is presented. The total 
variation of the image is minimized subject to constraints involving the statistics of the noise. The constraints are imposed 
using Lagrange multipliers. The solution is obtained using the gradient-projection method. This amounts to solving a time 
dependent partial differential equation on a manifold determined by the constraints. As t---~ 0o the solution converges to a 
steady state which is the denoised image. The numerical algorithm is simple and relatively fast. The results appear to be 
state-of-the-art for very noisy images. The method is noninvasive, yielding sharp edges in the image. The technique could 
be interpreted as a first step of moving each level set of the image normal to itself with velocity equal to the curvature of 
the level set divided by the magnitude of the gradient of the image, and a second step which projects the image back onto 
the constraint set. 

1.  I n t r o d u c t i o n  

The presence of noise in images is unavoid- 
able. It  may be introduced by the image forma- 
tion process,  image recording, image transmis- 
sion, etc. These random distortions make  it dif- 
ficult to pe r fo rm any required picture processing. 
For  example ,  the feature oriented enhancement  
introduced in refs. [6,7] is very effective in re- 
storing blurry images, but it can be " f rozen"  by 
an oscillatory noise component .  Even a small 
amount  of  noise is harmful when high accuracy is 
required,  e.g. as in subcell (subpixel) image 
analysis. 

In practice, to est imate a true signal in noise, 
the most  frequently used methods are based on 
the least squares criteria. The rationale comes 
f rom the statistical argument  that the least 
squares est imation is the best over  an entire 
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ensemble  of all possible pictures. This procedure 
is L 2 norm dependent .  However  it has been 
conjectured in ref. [6] that the proper  norm for 
images is the total variation (TV)  norm and not 
the L 2 norm.  T V  norms are essentially L 1 norms 
of derivatives, hence L1 estimation procedures 
are more  appropr ia te  for the subject of  image 
est imation (restoration). The space of functions 
of  bounded  total variation plays an important  
role when accurate estimation of discontinuities 
in solutions is required [6,7]. 

Historically, the L~ estimation methods go 
back to Galileo (1632) and Laplace (1793). In 
comparison to the least square methods where 
closed form linear solutions are well understood 
and easily computed,  the L 1 estimation is non- 
linear and computat ionally complex. Recently 
the subject of  L 1 estimation of statistical data has 
received renewed attention by the statistical 
communi ty ,  see e.g. ref. [13]. 

Drawing on our previous experience with 
shock related image enhancemen t  [6,7], we pro- 
pose to denoise images by minimizing the total 
variat ion norm of the est imated solution. We 
derive a constrained minimization algorithm as a 
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time dependent nonlinear PDE, where the con- 
straints are determined by the noise statistics. 

Traditional methods attempt to reduce/ 
remove the noise component prior to further 
image processing operations. This is the ap- 
proach taken in this paper. However, the same 
TV/L1 philosophy can be used to design hybrid 
algorithms combining denoising with other noise 
sensitive image processing tasks. 

2. Nonlinear partial differential equations based 
denoising algorithms. 

Let the observed intensity function u0(x, y) 
denote the pixel values of a noisy image for x, 
y ~  O. Let u(x, y) denote the desired clean 
image, so 

Uo(X, y) = u(x, y) + n(x, y), (2.1) 

when n is the additive noise. 
We, of course, wish to reconstruct u from u 0. 

Most conventional variational methods involve a 
least squares L 2 fit because this leads to linear 
equations. The first attempt along these lines was 
made by Phillips [1] and later refined by Twomey 
[2,3] in the one-dimensional case. In our two- 
dimensional continuous framework their con- 
strained minimization problem is 

minimize f (Uxx + Uyy) 2 (2.2a) 

subject to constraints involving the mean 

f u= f Uo (2.2b) 

and standard deviation 

f ( u  - u0) 2 = tr z . (2.2c) 

The resulting linear system is now easy to solve 
using modern numerical linear algebra. How- 
ever, the results are again disappointing (but 

better than the MEM) with the same 
constraints)-  see e.g. ref. [5]. 

The L 1 norm is usually avoided since the 
variation of expressions like Salu[ dx produces 
singular distributions as coefficients (e.g. 6 func- 
tions) which cannot be handled in a purely alge- 
braic framework. However, if L 2 and L 1 approxi- 
mations are put side by side on a computer 
screen, it is clear that the L 1 approximation looks 
better than the "same" L 2 approximation. The 
"same"  means subject to the same constraints. 
This may be at least partly psychological; how- 
ever, it is well known in shock calculations that 
the L 1 n o r m  of the gradient is the appropriate 
space. This is basically the space of functions of 
bounded total variation: BV. For free, we get the 
removal of spurious oscillations, while sharp sig- 
nals are preserved in this space. 

In ref. [6] the first author has introduced a 
novel image enhancement technique, called 
Shock Filter. It had analogy with shock wave 
calculations in computational fluid mechanics. 
The formation of discontinuities without oscilla- 
tions and relevance of the TV norm was ex- 
plored here. 

In a paper written by the first two authors [7], 
the concept of total variation preserving en- 
hancement was further developed. Finite differ- 
ence schemes were developed there which were 
used to enhance mildly blurred images signifi- 
cantly while preserving the variation of the origi- 
nal image. 

Additionally, in [8], Alvarez, Lions and Morel 
devised an interesting stable image restoration 
algorithm based on mean curvature motion, see 
also ref. [9]. The mean curvature is just the 
Euler-Lagrange derivative of the variation. 

We therefore state that the space of BV func- 
tions is the proper class for many basic image 
processing tasks. 

Thus, our constrained minimization problem 
is: 

dx dy (2.3a) minimize ~ x  2 + Uy2 
a 

subject to constraints involving u 0. 
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In our work so far we have taken the same two 
constraints as above: 

f u dx dy = f u o dx d y .  (2.3b) 
n 12 

This constraint signifies the fact that the white 
noise n(x, y) in (2.1) is of zero mean and 

f l ( u _  u0) 2 d x d y  

0 

= Or2 where o" > 0 is given 

(2.3c) 

As t increases, we approach a denoised version 
of our image. 

We must compute A(t). We merely multiply 
(2.5a) by (u - u0) and integrate by parts over 12. 
If steady state has been reached, the left side of 
(2.5a) vanishes. We then have 

A -  2o.2 + Uy 

( (u°)xux (u°)ruY ~] dx d y .  (2.6) 
2 2 q'- 2 2 , / 3  

The second constraint uses a priori information 
that the standard deviation of the noise n(x, y) is 
or. 

Thus we have one linear and one nonlinear 
constraint. The method is totally general as re- 
gards number and shape of constraints. 

We arrive at the Euler-Lagrange equations 

- A 1 - A2(u - Uo) in 12, with (2.4a) 

Ou 
On 0 on the boundary of 12 = 012. (2.4b) 

The solution procedure uses a parabolic equa- 
tion with time as an evolution parameter, or 
equivalently, the gradient descent method. This 
means that we solve 

uy 

- A ( u - u 0 )  , f o r t > O , x ,  y E / 2 ,  (2.5a) 

u(x, y,O) given, (2.5b) 

O n  
On 0 on a12. (2.5c) 

Note, that we have dropped the first constraint 
(2.3b) because it is automatically enforced by 
our evolution procedure (2.5a-c) if the mean of 
u(x, y, 0) is the same as that of u0(x, y). 

This gives us a dynamic value A(t), which 
appears to converge as t---~oo. The theoretical 
justification for this approach comes from the 
fact that it is merely the gradient-projection 
method of Rosen [14]. 

We again remark that (2.5a) with A = 0 and 
right part multiplied by [Vu I was used in ref. [8] 
as a model for smoothing and edge detection. 
Following ref. [9] we note that this equation 
moves each level curve of u normal to itself with 
normal velocity equal to the curvature of the 
level surface divided by the magnitude of the 
gradient of u. Our additional constraints are 
needed to prevent distortion and to obtain a 
nontrivial steady state. 

We remark that Geman and Reynolds, in a 
very interesting paper [10], proposed minimizing 
various nonlinear functionals of the form 

f q ~ ( ~ x  2 + u 2) dx dy 
12 

with constraints. Their optimization is based on 
simulated annealing, which is a computationally 
slow procedure used to find the global minimum. 
We, by contrast, seek a fast PDE solver that 
computes a "good"  local minimum of the TV 
functional. There is reason to believe that the 
local extrema approach is more relevant to this 
image processing task. 

Finally, we note that we originally introduced 
this method in two confidential contract reports 
[11,12]. 
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T h e  numer ica l  m e t h o d  in two spatial  d imen-  
sions is as follows. We let: 

x ~ = i h ,  y / = j h ,  i , j = O ,  1 , . . . , N ,  with 

Nh = 1 ,  (2.7a) 

t / 1 = n A t ,  n = 0 , 1 , . . . ,  (2.7b) 

/1 
uij = u(xi ,  y~, t , )  , (2.7c) 

o = Uo(ih, jh)  + crq~(ih, j h ) .  (2.7d) u o 

The  modif ied initial data  are chosen so that  
the  constraints  are bo th  satisfied initially, i.e. q~ 
has mean  zero  and L 2 n o r m  one.  

T h e  numerical  approximat ion  to (2.5),  (2.6) is 

n + l  n 

U O = Uij 

+ - - £  ,A  . , 2  . +uq) + (m(A+uq,  Ay-un))2)l/2ij/:: 

A+ uq 
+ A y_ y . . . . .  u n A xun))2)  1/2 

(A+uq + ~,m~a+ q, __ 0, ,  , 

- At A"(u~ - Uo(ih, j h ) ) ,  (2.8a) 

for i, j =  l , . . . , N ,  

with b o u n d a r y  condi t ions  
n n n n 

UOj ~ Ul j  , UNj ~ i, I N _ I , j )  

! 

(a) 

/1 n n 
Uio ~ UiN ~- Ui ,N-1  " 

(2.8b) 

H e r e  

A X u i j  = "T-(UiZ. 1, j --  Uij ) (2.9a) 

and similarly for  AYuq. 

re(a, b)  = m i n m o d ( a ,  b) 

_ ( sgn a + sgn b)min(lal ,  Ibl) (2.9b) 

and A/1 is def ined discreetly via 

= - - -  + 
20.2 . . (A+uq) 

x 0 x /1 (A+uq)(A+ u,j) 
x n 2 n 2 

V ( A  + u i j )  ~- (AY+ u i j )  

y 0 y n ~ ]  
_ (A+uq)(A+kuq)  )J  (2.9c) 

x n 2 y n 2 " V(a+u.) + (a÷u,;) 

A step size restr ic t ion is imposed  for  stability: 

At 
h- ~ ~< c .  (2.9d) 

3. Results  

We have  run our  two-d imens iona l  denois ing 
a lgor i thm on graphs  and  real  images .  

T h e  graphs  and  images  displayed take  on in- 

Signal 

Fig. 1. (a) "Bars". (b) Plot of (a). (e) Plot of noisy "bars", SNR = 1.0. (d) Noisy "bars", SNR = 1.0. (e) Plot of the 
reconstruction from (d). (e) TV reconstruction from (d). (g) Plot of the reconstruction error. 
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Noisy Signal 

Recovered Signal 

(c 

Error 

(e) 

Fig. 2. (a) Plot of fig. la  plus noise, SNR= 0.5. (b) Noisy fig. la,  SNR = 0.5. (c) Plot of the reconstruction from (b). TV 
reconstruction from (b). (e) Plot of the reconstruction error. 
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teger values from 0 to 255. When Gaussian white 
noise is added the resulting values generally lie 
outside this range. For display purposes  only we 
threshold; however, the processing takes place 
on a function whose values generally lie arbit- 
rarily far outside the original range. 

Signal to noise ratio (SNR) is defined by: 

SNR = Z a ( u u  - t~)2 
Z n ( n u )  2 , (3.1) 

where ti is the mean of the signal u u and n o is the 
noise. 

Figs. 1 and 2 concern three parallel steps taken 
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Fig. 3. (a) "Resolution Chart". (b) Noisy "Resolution Chart", SNR = 1.0. (c) Wiener filter reconstruction from (b). (d) TV 
reconstruction from (b). 
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from fig. 3a. This is 38 by 38 pixels wide 256 gray 
levels black and white original image. Fig. la 
shows the original signal. Fig. lb shows its inten- 
sity plot. Fig. lc shows the intensity of the noisy 
signal with additive Gaussian white noise, signal 
to noise ratio SNR 1. Fig. ld shows the noisy 
signal. Fig. le shows a graph of the recovered 

sharp signal and fig. If shows the recovered 
signal. Finally, fig. lg shows the error which is 
fairly "hollow". It is zero both within the origi- 
nal steps and also beyond a few pixels outside of 
them. Fig. 2a shows the intensity plot of a noisy 
signal when SNR = 1, twice as much Gaussian 
white noise as signal. Fig. 2b shows the noisy 

Fig. 4. (a) "Airplane". (b) Noisy "Airplane", SNR = 1.0. (e) Wiener filter reconstruction from (b). (d) TV reconstruction from 
(b). 
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image. Fig. 2c shows the intensity plot of the 
recovered signal and fig. 2d shows the recovered 
image. Finally, fig. 2e shows the almost "hollow" 
error. 

It appears that our denoising procedure beats 
the capability of the human eye - see figs. lb, 2b 
and 2c. 

The remaining figures are 256 gray level stan- 

dard black and white images taken from the 
USC IPI image data base. Fig. 3a shows the 
original 256 x 256 pixels resolution chart. Fig. 3b 
shows the result of adding Gaussian white noise, 
SNR 1. Fig. 3c shows the result of our denoising 
algorithm. Finally fig. 3d shows the result of 
using a Weiner filter where the power spectrum 
was estimated from fig. 3b. Notice fig. 3d has a 

Fig. 5. (a) "Tank". (b) Noisy "Tank", SNR = 1.0. (c) Wiener filter reconstruction from (b). (d) TV reconstruction from (b), 
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lot of background noise which makes it prob- 
lematic for automatic processing. Fig. 4a shows a 
256 × 256 airplane in the desert (clean image). 
Fig. 4b shows the result of adding Gaussian 
white noise - SNR 1. Fig. 4c shows the result of 
a denoising via our algorithm. Fig. 4d shows the 
result of a Weiner filter denoising with the true 
spectrum estimated from the noisy image, via a 
moving average. Fig. 5a shows the original 
512 × 512 picture of a tank. Fig. 5b shows the 
result of adding Gaussian white noise SNR 4. 
Fig. 5c shows a Weiner filter denoising with 
spectrum estimates from fig. 5b. Fig. 5d shows 
our algorithm applied to the same window. 
Notice that the discontinuities are much clearer 
in the last case. Also Wiener restoration has 
oscillatory artifacts. 

Our recent experiments indicate that the use 
of more constraints (information about the noise 
and the image) in this method will yield more 
details of the solution in our denoising pro- 
cedure. 
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