Statistics on Image Derivatives
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This can be modeled by Laplace distribution \
P(X)=2Ae™ a
~ dx

A varies a little between images
But this finding is very consistent

Intuition: Images are locally smooth

Most derivatives in images are very small,
but at some places (e.g. edges), they take large values
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Image Statistics

This observation has motivated many models of image context, or is
consistent with exiting models (see later in the course)

But further studying of image statistics shows a richer structures

d?1 d°t  d°l
~,—,,— are also of the same Laplace form
dx“  dx dx

The statistics of

Even the statistics of a general “derivative” operator take this form:

> a(x)I(x), st a(x)=1

XeW XeW
B We are losing information by only considering the statistics
of the first order derivative
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Note: Statistics of high order derivatives corresponds to increasingly non-
local image regularities

Statistics of first order derivatives are nearest neighbors (on lattice)

Statistics of Nt order derivatives are of nth nearest neighbors
Recall d—lz | (X +1)—1(X)
dx

d’l1 1
WzE{I(XJrl)JrI(X—1)—2|(X)}

Handout by Mark Green studies theses properties in detail
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