Statistics on Image Derivatives

Image Statistics

Estimate
$$P\left(\frac{dI}{dx}\right)$$
 or $P\left(\frac{dI}{dy}\right)$ from an image

This can be modeled by Laplace distribution

 $P(x) = 2\lambda e^{-\lambda|x|}$

 λ varies a little between images

But this finding is very consistent

Intuition: Images are locally smooth

Most derivatives in images are very small, but at some places (e.g. edges), they take large values

Image Statistics

This observation has motivated many models of image context, or is consistent with exiting models (see later in the course)

But further studying of image statistics shows a richer structures

The statistics of
$$\frac{d^2I}{dx^2}, \frac{d^3I}{dx^3}, \cdots, \frac{d^8I}{dx^8}$$
 are also of the same Laplace form

Even the statistics of a general "derivative" operator take this form:

$$\sum_{x \in W} a(x)I(x), \quad \text{s.t.} \sum_{x \in W} a(x) = 1$$

We are losing information by only considering the statistics of the first order derivative

Image Statistics

Note: Statistics of high order derivatives corresponds to increasingly nonlocal image regularities

Statistics of first order derivatives are nearest neighbors (on lattice)

Statistics of n^{th} order derivatives are of n^{th} nearest neighbors

Recall
$$\frac{dI}{dx} \approx I(x+1) - I(x)$$

 $\frac{d^2I}{dx^2} \approx \frac{1}{2} \{I(x+1) + I(x-1) - 2I(x)\}$

Handout by Mark Green studies theses properties in detail