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I Statistics of the derivatives of images. naturalness

I Weak Membrane Models. Mumford and Shah. Rudin, Osher, Fatemi.
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Statistics of Image Derivatives
I The statistics of image derivatives are extremely consistent for natural

images. Some researchers call this a naturalness prior. These statistics
differ greatly from those of random noise images (e.g., a flicking TV set).

I To explore this, differentiate an image I (x , y) – to obtain dI/dx – and
compute its histogram. This has a Laplacian distribution
p(x) = 1

Z(k)
exp{−k|x |}, where k is a positive constant and Z(k)

normalizes the distribution.
I Note that if the derivatives were normally distributed, then the plots would

look like a Gaussian and the ”tails” would fall off rapidly, like
exp{−(1/2)x2}. But instead they fall off much more slowly – the Gaussian
distribution is not robust enough to deal with this this data (it
under-estimates the changes of rare events – e.g., the black swans that
arguably caused the great recession).

I Intuitively, dI/dx is large at edges in the image (at boundaries of objects
or at sharp texture boundaries) and tends to be smaller elsewhere (note:
but texture contains many small edges.). So this empirical finding
(discovered in the 1990’s) suggests that the image derivatives are small at
many positions in the image, in other words images are piecewise smooth.
This related to the weak membrane models developed in the 1980’s (see
later this lecture). Membranes are smooth (e.g., soap bubbles) so weak
membrane are piecewise smooth (see also markov random field models
later in the course).
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Statistics of Generalized Image Derivatives: Green 1

I Researchers found that the statistics of higher order derivatives of images
also followed Laplacian distributions. This is less easy to reconcile with the
weak membrane models. Higher order derivatives correspond to longer
range spatial interactions.

I Intuitively, first order derivative can be approximated by the difference
between neighboring points on an image lattice, the second order
derivative requires considering the intensity values at three (or more)
neighboring points, and in general the nth order derivative requires
considering the intensity value at n neighboring points.

I Researchers (e.g., M. Green) did studies on generalized derivatives:
XA =

∑n
i=1 aiXi where

∑n
i=1 ai = 0. He found that these also obey

Laplacian distributions. This is inconsistent with weak membrane models.

I M. Green (who is a pure mathematician) took this idea to its logical
extreme. If generalized derivatives obeyed this property – i.e. had
Laplacian distributions f (X ) = β

2
exp{−β|x |} for some unknown β. —

∀{ai , ..., an} s.t.
∑n

i=1 ai = 0. He calls this property differentially
Laplacian. This assumes that the Laplacian parameter β is the same for all
choices of {a1, ..., an}, and Green provides evidence for this.
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Statistics of Generalized Image Derivatives: Green 2

I Green shows that this property can be exploited to define probability
distribution P(X1, ....,Nn) on the pixel intensities within an 8× 8 patch.
He first observes that the new set of variables Y1, ...,Yn−1, defined by
Yi = Xi − Xn, will obey the stronger Linear Laplacian constraint
YA =

∑n−1
i=1 aiYi ∀{ai , ..., an−1} will obey the same Laplacian distribution

(i.e. without requiring the constraint
∑n−1

i=1 ai = 0).

I He shows that the probability distribution for any variables which are
linearly Laplacian must obey:∫
p(Y1, ...,Yn−1) exp{−i

∑n−1
i=1 Yiωi}d ~Y = 2

||ω||2
B
+2

, where

||ω||2B =
∑n−1

i,j=1 Bijωiωj where Bij is the correlation function between Yi

and Yj , i.e. Bij =
∫
YiYjP(Y1, ...,Yn−1)d ~Y .

I This specifies a distribution for X1, ...,XN by P(X1, ...,Xn−1|Xn)P(Xn).
with P(X1, ...,Xn−1|Xn) = P(X1 − Xn, ...,Xn−1 − Xn). To go further, we
must know the correlation functions Bij of Yi and Yj . These can be
expressed in terms of the correlation functions between Xi − Xn and
Xj − Xn, in other words
< XiXj > − < Xi ,Xn > − < Xj − Xn > + < X − n,Xn > .

I The correlation functions between intensity values Xi ,Xj have been
measured and generally obey a fall-off rule: < XiXj >= (1 + γdij)

−α,
where α, γ are constants, and dij is the distance between the pixels i and j .



Lecture 5: Image Statistics and Weak Membrane Models

Statistics of Generalized Image Derivatives: Green 3

I There are several points to make.

I Firstly, these statistics show that there are many image regularities which
are not captured in the statistics of the first order derivatives of the
images. This implies there is longer range structure (we will return to this
when we discussion variational models and markov random fields).

I Secondly, these differentiable Laplacian statistics are independent of linear
transformations on the images. These linear transforms include scaling the
image by multiplying it by a constant and, more importantly, rescaling by
averaging the image within boxes This show that these statistics are
independent of scale.

I Thirdly, Green argues that similar statistics occur for many physical stimuli
and not just images (relates to the scaling properties).

I But what does this mean for computer vision? Naturalness Priors must be
based on high order derivative statistics of images (can be used to
regularize images – helpful for some deep network applications). The weak
membrane models (following) are problematic because they ignore these
higher order derivatives. Image patch models, however, are perhaps better
because they capture non-local correlation.
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Weak Membrane: Mumford and Shah (1)

I Mumford and Shah formulated image segmentation of a domain D as the
minimization of a functional E [J,B]. The input I is an image, The output
(Ĵ, B̂) = arg minE [J,B] is a smoothed image Ĵ and the position B̂ of the
boundaries that separates D into subdomains D =

⋃
Di , with

Di

⋂
Dj = 0 i 6= j (and B =

⋃
∂Di ) (i.e. b specifies the positions of a

one-dimensional set of points). E [J,B] is called a functional because the
argument is a function J(~x).

I E [J,B] = C
∫
d~x(I (~x)− J(~x))2 + A

∫
D/B

~∇J(~x) · ~∇J(~x)d~x + B
∫
B
ds.

I The first term ensures that the the smoothed image J is similar to the
input I . The second term ensures that J has small gradient |~∇J| (i.e. J is
smooth) except across boundaries B. The third term penalizes the length
of the boundaries (

∫
B
ds is a one-dimensional integral). Intuitively, it tries

to smooth the image I except at places where the image gradient |~∇I | is
too high – where it cost less energy to insert a boundary/edge.

I This model exploits both edge and regional cues: (i) edge cues: it tries to
insert boundaries at places where the gradient of the image I (~x) is large,
and (ii) regional cues: it tries to group pixels which have similar intensities
into regions. It is a type of week-smoothness or weak-membrane model.



Lecture 5: Image Statistics and Weak Membrane Models

Weak Membrane: Mumford and Shah (2)

I The Mumford and Shah model is of considerable historical and
mathematical interest. Mathematically, it was non-trivial to prove that the
energy functional had well defined minima (Ambrosio and Torterelli).

I Historically, it was one of the three classic
weak-smoothness/weak-membrane models proposed for image
segmentation. The two other (Geman and Geman – Blake and Zisserman)
were formulated in terms of Markov Random Fields). All these models
(invented independently in the early 1980’s) combined edge and regional
cues.

I Mumford and Shah has practical limitations. The energy functional is
non-convex so it is not easy to specify algorithms that will minimize it (and
impossible to specify an algorithm that converges to the global optimum.

I Like other weak-membrane models, Mumford and Shah relies on first order
derivatives ((or first order differences, when converted to a discrete lattice,
hence nearest neighbor interactions for Markov Random Fields). This
means that it cannot capture non-local statistics and hence is not a very
accurate model of natural images.
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Weak Membrane: Mumford and Shah (3)

I Ambrosio and Torterelli. Define a functional E [J, z ; ε] = C
∫

(J(~x)−
I (~x))2d~x + A

∫
z(~x)|~∇J(~x)|2d~x + B

∫
{ε|~∇z(~x)|2 + ε−1φ2(z(~x))}d~x .

I where ε > 0 is small parameter and φ(z) is a potential function. A choice
for φ(z) = (1− z)/2 for z ∈ [0, 1]. The edge set B will be the set of
points z such that φ(z) ≈ 0 (i.e. z ≈ 1).

I It can be shown that in the limit as ε 7→ 0 that this energy functional is
equivalent to Mumford and Shah.

I Steepest descent can be performed on E [J, z ; ε] with respect to J and z
while gradually decreasing ε. This will converge to a minimum of Mumford
and Shah.
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Weak Membrane: Rudin-Osher-Fatemi (1)

I This models is not strictly a weak membrane model, but it has many of
their good properties and some of their bad properties (like having local
interactions). It also has the big advantage that it is convex. Hence
applied mathematicians can develop efficient algorithms for finding its
global minimum. For these reasons it was very effective for image
denoising (until replaced by patch-based methods – e.g., dictionaries –
which were able to capture longer-range interactions.

I The Rudin-Osher-Fatemi model takes the form:
E [J; I ] =

∫
D
|~∇J|d~x + λ

2

∫
D

(J(~x)− I (~x))2d~x . Minimizing this with respect
to J gives a smoothed image. Thresholding the derivatives of J gives the
edges.

I This functional is convex since it consists of an L1 norm tern plus a
quadratic term. Both terms are convex, so their sum is also convex.

I Unlike the weak membrane models, this model does not decompose the
image into a sum of disjoint regions. It does smooth images across
boundaries (if the boundaries are defined by thresholding the gradients of
J). This is slightly ugly. But is is a necessary price for ensuring that the
energy functional is convex.
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Weak Membrane: Rudin-Osher-Fatemi (2)

I The Rudin-Osher-Fatemi model can be reformulated to have variable that
are like edges.

I E [J, z] = 1
2

∫
D
{z |~∇J|2 + z−1}d~x + λ

2

∫
D

(J − I )2d~x .

I We can solve for z = 1/|~∇J| (differentiate E [J, z] with respect to z) and
substitute back to obtain the Rudin-Osher-Fatemi model. We can
interpret z as a measure of edgeness – z = 0 indicates an edge.

I Alternative minimization can be used to minimize E [J, z]. Minimizing

E [J, z] with respect to z yields z t+1 = 1/|~∇J t |. Minimizing E [J, z] with

respect to z requires solving: −2~∇{z t ~∇J t+1}+ λ(J t+1 − I ) = 0, which
has a unique solution (since E [J, z] is a convex function of J if z is fixed).

I This alternative minimization reduces to the well-known lagged-diffusion
model: −~∇ · {|~∇J t |−1~∇J t+1}+ λ(J t+1 − I ) = 0.

I Note: should have a link to level-sets, split-Bregman, and other algorithms
for this type of problem.
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Convexity and Steepest Descent

I An energy functional (or function) E [J; I ] is convex if for all 0 ≤ α ≤ 1
and any J1, J2 we have αE [J1, I ] + (1− α)E [J2, I ] ≥ E [α1J1 + (1− α1)J2].
This is equivalent to the condition that the Hessian of E [J; I ] – the second

order derivatives δ2E
δJ2

– is positive semi-definite.

I Steepest descent updates J in the direction of the gradient − ∂E
∂J

(i.e.
downhill in E [J; I ]. This is guaranteed to reduce the energy:
dJ
dt

= − ∂E
∂J
, Implying dE

dt
= − ∂E

∂J
dJ
dt

= − ∂E
∂J

∂E
∂J
≤ 0.

I If E [J] is convex and bounded below (e.g., E [J] ≥ 0) then E [J] has a
unique minimum (which is global) and steepest descent is guaranteed to
find it. There are non-convex functions which only have a singe (global)
minimum. But convexity is the only criterion that can be easily checked to
guarantee that an energy function has a unique minimum.

I Concave functions are the opposite of convex functions (i.e. if f (x) is
convex then −f (x) is concave, and vice versa).Surprisingly most functions
can be decomposed into the sum of convex and concave terms.
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Variational Bounding and CCCP (1)

I Steepest descent methods need to be discretized in time to be
implemented by computers. We must convert the update equation
d~x
dt

= − ∂f
∂~x

= −~∇f (~x) into a discrete update rule: ~xt+1 = ~xt −∆~∇f (~x(t)).
But finding a good value for ∆ is difficult. Too small a values makes
steepest descent go very slowly. But too big a value may prevent the
algorithm from converging.

I Discrete iterative algorithms are an alternative. Variational bounding
proceeds by obtaining a sequence of bounding functions EB(~x , ~xn) where
~xn is the current state. The bounding functions must obey:
EB(~x , ~xn) ≥ E(~x),∀~x , ~xn and EB(~xn, ~xn) = E(~xn).

I Then the algorithm ~xn+1 = arg min~x EB(~xn) is guaranteed to converge to a
minimum of E(~x). The algorithm can make large moves from ~xn to ~xn+1.
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Variational Bounding and CCCP (2)

I A special case of this approach is called CCCP. Decompose the function
E(~x) into a concave Ec(~x) and a convex part Ev (~x) so that:
E(~x) = Ec(~x) + Ev (~x).

I Then the update rule ~∇Ev (~xn+1) = −~∇Ec(~xn) is guaranteed to decrease
the energy. This can be shown directly, or follows from variational
bounding where EB(~x , ~xn) = Ev (~x) + Ec(~xn) + (~x − ~xn) · ~∇Ec(~xn).

I It can be shown that many existing discrete iterative optimization
algorithms can be re-expressed as CCCP or variational bounding
(sometimes by performing changes of variables).

I Even Steepest Descent can be derived as a special case. Express
E(~x) = E(~x) + λ/2|~x |2 − λ/2|~x |2. If we make λ sufficiently large, then
E(~x) + λ/2|~x |2 will be convex and −λ/2|~x |2 will be concave. Applying
CCCP we rederive iterative steepest descent (with ∆ depending on λ).
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To Do

I Add calculus of variations.

I Maybe add Legendre transform.


