
Lecture 4

I The Expectation-Maximization Algorithm

I Super-pixels: Generative versus Affinities

I Affinities and Spectral Clustering

I Segmentation by Weighted Aggregation

The EM Algorithm (1)

I The EM algorithm is a way to estimate parameters θ of a model if some
variables x can be observed, but others h are hidden/latent/missing (terms
differ depending on the research community).

I A classic paper (Dempster, Laird, and Rubin 1977) showed that EM was a
general way to formulate problems of this type (many existing algorithms
were special cases of EM). Special cases, not known to Dempster et al.,,
included Hidden Markov Models (HMMs) and the Boltzmann Machine
(BM).

I Suppose we have data x which is generated by a probabilistic model
P(x |h, θ) with a prior p(h) for the hidden variables h. This gives a
distribution p(x , h|θ) from which we can compute the marginal
distribution p(x |θ) =

∑
h p(x , h|θ).

I The goal is to estimate θ̂ = arg maxP(x |θ) (i.e. the maximum likelihood
estimate of θ). This can be formulated in terms of minimizing
− log p(x |θ).

The EM Algorithm (2)
I To obtain EM we introduce a new variable q(h) which is a distribution

over the hidden variables. We define a free eergy function
F (θ, q) = − log p(x |θ) +

∑
hq(h) log q(h)

p(h|x,θ) . The second term is the
Kullback-Leibler divergence, which has the property that it is non-negative
and is zero only if q(h) = p(h|x , θ). This implies that minimizing F (θ, q)
with respect to θ and q is equivalent to minimizing − log p(x |θ) with
respect to θ (by setting q(h) = p(h|x , θ)).

I The EM algorithm consists of minimizing F (θ, q) with respect to θ and
q(.) alternatively. (These correspond to the two steps of the k-means
algorithm.) The algorithm is specified most simply by re-expressing
F (θ, q) =

∑
h q(h) log q(h)−

∑
q(h) log p(h, x |θ) (which exploits

p(h, x |θ) = p(h|x , θ)p(x |θ and
∑

hq(h) log p(x |theta) = log p(x |theta).
I The algorithm starts with an initialization. Then follows by repeating the

two staps: (1) Fix θ and estimate q̂(.) by p(h|x , θ), which requires
computing P(h, x |θ)/p(x |θ). (2) Fix q(.) and estimate
θ̂ = arg min | −

∑
h q(h) log p(h, x |θ).

I Step 1 minimizes F (θ, q) with respect to q and Step 2 minimizes F (θ, q)
with respect to θ. Hence each step is guaranteed to reduce the free energy
and hence the algorithm converges to a minimum of the free energy. The
free energy is a non-convex function, so typically we need a good
initialization to ensure that the EM algorithm obtains a good result (i.e.
results in a solution which is close to the global minimum),

The EM Algorithm (3)

I Dempster et al. did not formulate EM in terms of minimizing a free
energy. This formulation was due to Hathaway (Statistics community) and
Hinton and Neal (neural network community). The free energy
formulation is better because it enables many variants and approximations
(e.g., do iterations of steepest descent with respect to q(.) or θ, restrict
q(.) to take a specific form – like a factorizable distribution – to make the
E and M steps possible. Note: for many problems it is hard to compute
the E and M steps (it is easy for mixtures of Gaussians).

I Here is another variant. Suppose we have p(θ|D) =
∑

h p(θ, h|D), where
D is the data. Introduce a distribution q(h) and define a free energy

F (θ, q) = − log p(θ|D) +
∑

h q(h) log q(h)
p(h|θ,D)

I Then, similar to previous slide, we minimize with respect to q(h) and θ
alternatively. This gives two steps: (1) Fix qt , set
θt+1 = arg minθ{−

∑
h q(h) log p(h, θ|D)}. (2). Fix θt , set

qt+1(h) = p(h|θt ,D). Initialize and iterate both steps until convergence.

The EM Algorithm (4)

I Another variant (similar to k-means) is where we have data
{xn : n = 1, ...,N} generated by a distribution p(xn|hn, θ), where the
hidden variables hn are different for each n (this is the typically case). We
introduce distributions qn(hn). The goal is to minimize the negative
log-likelihood of all the data −

∑N
n=1 log p(xn|θ), where

p(xn|θ) =
∑

hn
(xn, hn|θ).

I We define a free energy
F (θ, {qn()}) = −

∑N
n=1 log p(xn|θ) +

∑N
n=1 qn(hn) log qn(hn)

p(hn|xn,θ) . The EM

algorithm consists of minimizing F (.,) with respect to {qn()} and θ
alternatively, and yield steps similar to those on the previous slides.

Super-pixels: Generative versus Affinity
I The goal of super-pixels is to decompose an image into non-overlapping

subregions, where the intensity/texture properties are roughly
homogeneous within each subregion. A stronger requirement is that
neighbouring sub-regions have different intensity/texture properties. If D
is the image domain (e.g., a grid) then we want to decompose it into a set
of sub-regions Da, so that D =

⋃
a Da and these sub-regions doe not

overlap, Da

⋂
Db = φ for all a 6= b, where φ is the empty set.

I Note that this is a variant of clustering (as addressed by the EM
algorithm), which includes spatial relations. We want to cluster different
image points together so that: (i) points with similar intensity/texture
properties tend to get clustered together, and (ii) points which are
spatially near each other tend to get clustered together.

I Similarly as for clustering, there are two types of methods to formulate
this problem. The first type is generative, where we assume that there is a
probability model for generating the data (e.g., a mixture of Gaussians).
The mixture variables specify the clusters (e.g., datapoints which are
generated by the same Gaussian get put in the same cluster). The second
type is to specify an affinity measure between datapoints, e.g., w(xi , xj)
and to group datapoints which have high affinity together.

I There are many ways of grouping by affinity. One of the best known
techniques is spectral clustering (notes for this should be made available).
We will present a simple algorithm for grouping by affinity on the next
slide.

Grouping by Affinity

I We present a simple algorithm for grouping by affinity. We have a set of
datapoints {xn} and an affinity measure w(xn, xm), so that w(xn, xm) is
large if xn and xm are similar, but small if they are not.

I We define a set of subgroups Ci (.) of datapoints. We construct these
subgroups by an algorithm, see below, which attempts to put similar
datapoints into the same cluster. This involves a threshold τ (to specify
the tradeoff between having a large number of subgroups within which all
the datapoints are very similar, versus a smaller number of subgroups
within which the datapoints are less similar). This algorithm is intuitive
but not guaranteed to converge to an optimal set of subgroups.

I Order the datapoints at random and set C1() = {x1}. For datapoint x2, if
w(x2, x1) > τ

∑
n w(x2, xn) then set C1() = {x1, x2|], otherwise set

C1 = {x1},C2 = {x2}. the algorithm proceeds in the natural way. At time
step t we have ta ≤ t − 1 subrgoups {Ci (.) : i = 1, ..., ta} each of which is
represented by a single datapoint x∗i (the first datapoint assigned to that
subgroup). For datapoint xt we compute its similarity w(xn, x

∗
i) to each of

the sub-groups and compare to τ
∑

n w(xt , xn). If
maxi w(xn, x

∗
i) < τ

∑
n w(xt , xn) then create a new class Cta+1 = {xt}. If

not, assign xn to the subgroup Cn∗ , where n∗ = arg maxi w(xn, x
∗
i).

Generative versus Affinity

I What are the advantages of generative or affinity methods for clustering
and for super-pixels? This is a hard question to answer and is problem
specific. For some problems there are natural affinity measures, while for
others there are natural generative models. Theoretically, if you know the
generative model then it is possible to derive an affinity (Griffiths and
Tenenbaum) but this of often nor very practical (and, for vision, it is very
hard to specify generative models).

I Even if generative models are known it can be useful to use affinity
methods to initialize the EM algorithm (the effectiveness of EM depends
strongly on whether you can initialize it well). For example, consider
generative models of images of cars. Here the hidden variable is the
viewpoint. Cars seen from similar viewpoints have similar images, so it is
possible (though not easy) to use affinity methods to group cars in
different viewpoints. This helps initialize an EM algorithm, because car
images clustered by viewpoint (using affinity methods) should have the
same hidden variables.

Super-pixels example – and why should you care?
I The second handout for this lecture give an example of super-pixels which

uses a combination of both generative models and affinities. The
generative models are extensions of mixtures of Gaussians, where the
variables include the spatial positions in the image as well as their image
intensities (the SLIC algorithm). This divides the image into subregions
which tend to be homogeneous, but all subregaions have fairly similar sizes
so neighbouring subregions may also have similar image/texture
properties. A second stage uses affinity methods to group together
subregions whose image/texture properties are similar, which results in
super-pixels which have homogeneous image/texture properties but which
can differ greatly in size.

I Why should we care about super-pixels? They were an important research
topic before the rise of Deep Nets. They could also be used as ways to
specify the location and sizes of objects in images, which could be used to
initialize object classification by Deep Nets. They suffer, at present,
because there are no datasets for benchmarking them and it is not possible
to train them end-to-end (although it is possible to learn affinities). But
this is also an advantage because they can be applied to the many real
world problems where bencharked ground truth is not available for training
algorithms. There are neuroscientific theories that the goal of every vision
is to break images up into psuedo-objects (von der Heyte, Niebur,
Etienne-Cummings) which is in the spirit of super-pixels (though the
methods they use are rather different).

Additional Notes: Missing

I Spectral Clustering – handout will be prepared.

I Segmentation by Weighted Aggregation – handour will be prepared.

