Vision as Bayesian Inference

Alan Yuille

February 8, 2020

Lecture 3

- ► Learning a Dictionary. Ultra-Sparse dictionary.
- ► The K-means algorithm.
- Soft-coding: mixture of Gaussians with EM.
- Mixture of Von Mises Fisher.
- ► Mini-epitomes. Image shifts.

Matched Filters (1)

- Suppose we have a filter \vec{B} and an input image patch $\vec{I_p}$. We want to find the best fit of the filter to the image by allowing us to transform the filter by $\vec{B} \mapsto a\vec{B} + b\vec{e}$, where $\vec{e} = (1/\sqrt{N})(1,...,1)$. This corresponds to scaling the filter by \vec{a} and adding a constant vector \vec{b} . If \vec{B} is a derivative filter then, by definition, $\vec{B} \cdot \vec{e} = 0$. We normalize \vec{B} and \vec{e} so that $\vec{B} \cdot \vec{B} = \vec{e} \cdot \vec{e} = 1$.
- ► The goal is to find the best scaling/contrast a and background b to minimize the match:

$$E(a,b) = |\vec{I_p} - a\vec{B} - b\vec{e}|^2.$$

The solution \hat{a} , \hat{b} are given by (take derivatives of E with respect to a and b, recalling that \vec{B} and \vec{e} are normalized):

$$\hat{a} = \vec{B} \cdot I_p, \quad \hat{b} = \vec{e} \cdot \vec{I}_p.$$

Matched Filters (2)

- In this interpretation, the filter response is just the best estimate of the contrast a. The estimate of the background b is just the mean value of the image. Finally, the energy $E(\hat{a},\hat{b})$ is a measure of how well the filter "matches" the input image.
- ▶ The idea of a matched filter leads naturally to the idea of having a "dictionary" of filters $\{\vec{B}^{\mu}:\mu\in\Lambda\}$, where different filters \vec{B}^{μ} are tuned to different types of image patches. In other words, the input image patch is encoded by the filter that best matches it. The magnitude of the dot product $\vec{B}\cdot\vec{I}$ is less important than deciding which filter best matches the input $\vec{I_p}$.
- Matched filters can be thought of an extreme case of sparsity. In the previous lecture an image was represented by a linear combination of basis functions whose weights were penalizes by the L1-norm, $\sum_i |\alpha_i|$. By comparison, matched filters represent an image by a single basis function. This gives an ever sparser representation of the image, but at the possible cost of a much larger image dictionary. Matched filters can be thought of as feature detectors because they respond only to very specific inputs.

K-means (1)

- ▶ One way to learn a dictionary of basis functions, for matched filters, is by using the K-means algorithm. This is a classic clustering algorithm but there are many others. As we will show, it related to mixtures of Gaussians and the EM algorithm.
- ▶ For simplicity, we will set a=1 and b=0 (i.e. ignore contrast and background, we will return to them later). Hence we seek a set of basis functions which minimize $E(\{B^k\}) = \sum_{n=1}^N \min_k |\vec{l_n} \vec{B}^k|^2$.
- ▶ We can find the dictionary $\{B^k\}$ by the K-means algorithm. This is not guaranteed to converge to a global minimum, but there are efficient methods like k++ for initialization. K-means is a *clustering algorithm* because it clusters data into different subgroups (one basis for each subgroup).

K-means (2)

- ▶ The input to K-means is a set f unlabeled data: $D = \{x_1, ..., x_n\}$. The goal is to decompose it into disjoint classes $w_1, ..., w_k$ where k is known. The basic assumption is that the data D is clustered round (unknown) mean values $m_1, ..., m_k$.
- ▶ We defines an association variable V_{ia} . $V_{ia}=1$ if datapoint x_i is associated to mean m_a and $V_{ia}=0$ otherwise. we have the constraint $\sum_a V_{ia}=1$ for all i (i.e. each datapoint is assigned to a single mean). This gives a decomposition of the data. $D_a=\{i:V_{ia}=1\}$ is the set of datapoints associated to mean m_a . The set $D=\bigcup_a D_a$ is the set of all datapoints. $D_a \cap D_b = \phi$ for all $a \neq b$, where ϕ is the empty set.
- We defines a goodness of fit:

$$E(\{V\},\{m\}) = \sum_{i=1}^{n} \sum_{a=1}^{k} V_{ia}(x_i - m_a)^2 = \sum_{a=1}^{k} \sum_{x \in D_a} (x - m_a)^2$$
 (1)

▶ The goal of the k-means algorithm is to minimize $E(\{V\}, \{m\})$ with respect to $\{V\}$ and $\{m\}$. E(.,.) is a non-convex function and no known algorithm can find its global miminum. But k-means converges to a local minimum.

K-means (3)

- The k-means algorithm
- ▶ 1. Initialize a partition $\{D_a^0 : a = 1 \text{ to k}\}$ of the data. (I.e. randomly partition the datapoints or use K++).
- ▶ 2. Compute the mean of each cluster D_a , $m_a = \frac{1}{|D_a|} \sum_{x \in D_a} x$.
- ▶ 3. For i=1 to n, compute $d_a(x_i) = |x_i m_a|^2$. Assign x_i to cluster D_{a^*} s.t. $a^* = \arg\min\{d_a(x_i), ..., d_k(x_i)\}$
- ▶ 4. Repeat steps 2 & 3 until convergence.
- ▶ This will converge to a minimum of the energy function because steps 2 and 3 each decrease the energy function (or stop if the algorithm is at a local minimum). This will divide the space into disjoint regions.
- k-means can be formulated in terms of the assignment variable. At step 2, $m_a = \frac{1}{\sum_i V_{ia}} \sum_i V_{ia} x_i$. At step 3. $V_{ia} = 1$ if $|x_i m_a|^2 = \min_b |x_i m_b|^2$ and $V_{ia} = 0$ otherwise.

Soft K-means. Mixture of Gaussians. (1)

- ▶ A "softer" version of k-means the Expectation-Maximization (EM) algorithm. Assign datapoint \underline{x}_i to each cluster with probability (P_1, \ldots, P_k)
- 1. Initialize a partition of the datapoints.
- ▶ 2. For j=1 to n. Compute the probability that x_j belongs to ω_a . $P(\omega_a|x_j) = \frac{\exp{-\frac{1}{2\sigma^2}(x_j m_a)^2}}{\sum_k \exp{-\frac{1}{2\sigma^2}(x_j m_b)^2}}.$
- ▶ 3. Compute the mean for each cluster: $m_a = \sum_i x_i P(\omega_a | x_j)$
- ▶ 4 Repeat steps 2 & 3 until convergence.
- In this version the hard-assign variable V_{ia} is replaced by a soft-assign variable $P(\omega_a|x_j)$. Observe that $\sum_a P(\omega_a|x_j)=1$. Also observe that the softness is controlled by σ^2 . In the limit, as $\sigma^2\mapsto 0$, the distribution $P(\omega_a|x_j)$ will become binary valued, and soft k-means will be the same as k-means.

Soft K-means. Mixture of Gaussians. (2)

- Soft k-means can be reformulated in terms of mixtures of Gaussians and the Expectation-Maximization (EM) algorithm.
- This assumes that the data is generated by a mixture of Gaussian distributions with means $\{m\}$ and variance $\sigma^2 \mathbf{I}$. $P(x|\{V\},\{m\}) = \frac{1}{2} \exp\{-\sum_i V_{ia} \frac{||x_i m_a||^2}{\sigma^2}\}.$
- ► This is equivalent to a mixture of Gaussians: $P(x|V,m) = \mathcal{N}(x:\sum_a V_{ia}m_a,\sigma^2)$, where the variable V identifies the mixture component (i.e. $V_{ia}=1$ if datapoint x_i was generated by mixture a).
- ▶ We need to impose a prior $P(\{V\})$ on the assignment variable V. It is natural to choose a uniform distribution P(V) = 1/Z, where Z is the number of possible assignments of the datapoints to the means.

Soft K-means. Mixture of Gaussians. (3)

- ▶ This gives distributions $P(x, \{V\}|\{m\}) = P(x|\{V\}, \{m\})P(\{V\})$. This form enables us to use the EM algorithm (see later lecture).EM will estimate the mean variables $\{m\}$ despite the presence of unknown/missing/latent variables $\{V\}$.
- ▶ The EM algorithm can be applied to problems like this where there are quantities to be estimated but also missing/latent variables. The EM algorithm can be formulated in terms of minimizing an energy function, but this energy function is non-convex and EM can be only guaranteed to converge to a minimum of the energy function and not to a global minimum. Deriving the soft k-means algorithm by applying the EM algorithm to P(x|V,m) is left as an exercise for the reader.
- ▶ We can extend soft k-means in several ways. The simplest is to allow the covariances of the Gaussians to differ and to estimate them as well.
- ▶ But, more generally, we can have a process $P(x, h|\theta)$ where x is the observed data, h is a hidden/missing/latent variable, and θ are the model parameters.

Mixture of Von Mises Fisher

- A second example arises if we require that the data has unit norm $|x_i|=1, \forall i$ and hence lies on the unit sphere. This can be used to deal with the scaling of images. Recall $I(x)\mapsto aI(x)+b$, where a is the scale (contrast) and b is the background. We set b=0 and normalize the images by $I(x)\mapsto \frac{I(x)}{I(I(x))}$ (so that I(x) has unit norm).
- ► The Von Mises Fisher distribution is $P(x)|k, \lambda_k) = \frac{\exp{\{\lambda_k m_k \cdot x\}}}{Z(\lambda_k)}$. Here $x|=|m_k|=1$, and σ_k is a positive constant.
- Note that this distribution is related to the Gaussian distribution (with spherical covariance). The exponent of this Gaussian is $-\frac{(x-m_k)^2}{2\sigma^2}$. If we require $|x|=|m_k|=1$, then the exponent becomes $\frac{(x\cdot m_k-1)}{\sigma^2}$. So if we identify λ_k with $1/\sigma_k^2$ we recover Von Mises Fisher. In other words, Von Mises Fisher is the natural way to re-formulate mixtures of Gaussians for data that lies on the unit sphere.

Mini Epitomes (1)

- ▶ This is another way to learn a dictionary with a more complicated generative model with more hidden variables. It is motivated by the fact that images are shift-invariant (unless they are carefully aligned). Recall, see powerpoints, that we want invariance to $I(x) \mapsto aI(x-x_0) + b$, where x_0 is a shift.
- Let $\{\mathbf{x}_i\}_{i=1}^N$ be a set of possibly overlapping patches of size $h \times w$ pixels cropped from a large collection of images.
- Our dictionary comprises K mini-epitomes $\{\mu_k\}_{k=1}^K$ of size $H \times W$, with $H \ge h$ and $W \ge w$. The length of the vectorized patches and epitomes is then $d = h \cdot w$ and $D = H \cdot W$, respectively.
- We approximate each image patch \mathbf{x}_i with its best match in the dictionary by searching over the $N_p = h_p \times w_p$ (with $h_p = H h + 1$, $w_p = W w + 1$) distinct sub-patches of size $h \times w$ fully contained in each mini-epitome. Typical sizes we employ are 8×8 for patches and 16×16 for mini-epitomes, implying that each mini-epitome can generate $N_p = 9 \cdot 9 = 81$ patches of size 8×8 .

Mini Epitomes (2)

- We model the appearance of image patches using a Gaussian mixture model (GMM). We employ a generative model in which we activate one of the image epitomes μ_k with probability $P(l_i = k) = \pi_k$, then crop an $h \times w$ sub-patch from it by selecting the position $p_i = (x_i, y_i)$ of its top-left corner uniformly at random from any of the N_P valid positions.
- We assume that an image patch \mathbf{x}_i is then conditionally generated from a multivariate Gaussian distribution $P(\mathbf{x}_i|\mathbf{z}_i,\theta) = \mathcal{N}(\mathbf{x}_i;\alpha_i\mathbf{T}_{p_i}\mu_{l_i} + \beta_i\mathbf{1},c_i^2\mathbf{\Sigma}_0).$
- The label/position latent variable vector $\mathbf{z}_i = (l_i, x_i, y_i)$ controls the Gaussian mean via $\nu_{\mathbf{z}_i} = \mathbf{T}_{p_i} \mu_{l_i}$. Here \mathbf{T}_{p_i} is a $d \times D$ projection matrix of zeros and ones which crops the sub-patch at position $p_i = (x_i, y_i)$ of a mini-epitome. The scalars α_i and β_i determine an affine mapping on the appearance vector and account for some photometric variability and $\mathbf{1}$ is the all-ones $d \times 1$ vector. Here \bar{x} denotes the patch mean value and λ is a small regularization constant (we use $\lambda = d$ for image values between 0 and 255).

Mini Epitomes (3)

- We choose $\pi_k = 1/K$ and fix the $d \times d$ covariance matrix $\mathbf{\Sigma}_0^{-1} = \mathbf{D}^T \mathbf{D} + \epsilon \mathbf{I}$, where \mathbf{D} is the gradient operator computing the x- and y- derivatives of the $h \times w$ patch and ϵ is a small constant.
- ▶ To match a patch \mathbf{x}_i to the dictionary, we seek the mini-epitome label and position $\mathbf{z}_i = (l_i, x_i, y_i)$, as well as the photometric correction parameters (α_i, β_i) that maximize the probability, or equivalently minimize the squared reconstruction error (note that $\mathbf{D1} = \mathbf{0}$).
- ▶ The squared reconstruction error is: $R^2(\mathbf{x}_i;k,p) = \frac{1}{c_i^2} \left(\|\mathbf{D} \left(\mathbf{x}_i \alpha_i \mathbf{T}_p \mu_k \right)\|^2 + \lambda (|\alpha_i| 1)^2 \right)$, where the last regularization term discourages matches between patches and mini-epitomes whose contrast widely differs.

Mini Epitomes (4)

- ▶ We can compute in closed form for each candidate match $\nu_{\mathbf{z}_i} = \mathbf{T}_{\rho_i} \mu_{l_i}$ in the dictionary the optimal $\hat{\beta}_i = \bar{\mathbf{x}}_i \hat{\alpha}_i \bar{\nu}_{\mathbf{z}_i}$ and $\hat{\alpha}_i = \frac{\bar{\mathbf{x}}_i^T \bar{\nu}_{\mathbf{z}_i} \pm \lambda}{\bar{\nu}_{\mathbf{z}_i}^T \bar{\nu}_{\mathbf{z}_i} + \lambda}$, where $\tilde{\mathbf{x}}_i = \mathbf{D}\mathbf{x}_i$ and $\tilde{\nu}_{\mathbf{z}_i} = \mathbf{D}\nu_{\mathbf{z}_i}$ are the whitened patches.
- ▶ The sign in the nominator is positive if $\tilde{\mathbf{x}}_i^T \tilde{\nu}_{\mathbf{z}_i} \geq 0$ and negative otherwise. Having computed the best photometric correction parameters, we can evaluate the reconstruction error $R^2(\mathbf{x}_i; k, p)$.
- In order to learn the parameters we use the EM algorithm. Given a large training set of unlabeled image patches $\{\mathbf{x}_i\}_{i=1}^N$, our goal is to learn the maximum likelihood model parameters $\theta = (\{\pi_k, \mu_k\}_{k=1}^K)$ for the epitomic GMM model.. As is standard with Gaussian mixture model learning, we employ the EM algorithm and maximize the expected complete log-likelihood.
- ► The loglikelihood is $L(\theta) = \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{p \in \mathcal{P}} \gamma_i(k, p) \cdot \log \left(\pi_k \mathcal{N} \left(\mathbf{x}_i; \alpha_i \mathbf{T}_p \mu_k + \beta_{i1} c_i^2 \Sigma_0 \right) \right),$ where \mathcal{P} is the set of valid positions in the epitome.

Mini Epitomes (5)

- In the E-step, we compute the assignment of each patch to the dictionary, given the current model parameter values. We use the hard assignment version of EM and set $\gamma_i(k,p)=1$ if the *i*-th patch best matches in the *p*-th position in the *k*-th mini-epitome and 0 otherwise.
- In the M-step, we update each of the K mini-epitomes μ_k by $\left(\sum_{i,p}\gamma_i(k,p)\frac{\alpha_i^2}{c_i^2}\mathbf{T}_p^T\Sigma_0^{-1}\mathbf{T}_p\right)\mu_k=\sum_{i,p}\gamma_i(k,p)\frac{\alpha_i}{c_i^2}\mathbf{T}_p^T\Sigma_0^{-1}(\mathbf{x}_i-\bar{\mathbf{x}}_i\mathbf{1}).$
- ▶ See powerpoints for the results.