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Lecture 3

Learning a Dictionary. Ultra-Sparse dictionary.

The K-means algorithm.

>
>
» Soft-coding: mixture of Gaussians with EM.
» Mixture of Von Mises Fisher.

>

Mini-epitomes. Image shifts.



Matched Filters (1)

» Suppose we have a filter B and an input image patch F We want to find
the best fit of the filter to the image by aIIowmg us to transform the filter
by B — aB + b&, where &= (1/v/N)(1,...,1). This corresponds to scaling
the filter by a and adding a constant vector b. If B is a derivative filter
then, by definition, B - € = 0. We normalize B and & so that
B-B=¢-é=1

» The goal is to find the best scaling/contrast a and background b to
minimize the match:

E(a, b) = |I, — aB — bé*.

> The solution 4, b are given by (take derivatives of E with respect to a and
b, recalling that B and & are normalized):

!

5=B-1, b=



Matched Filters (2)

» In this interpretation, the filter response is just the best estimate of the
contrast a. The estimate of the background b is just the mean value of
the image. Finally, the energy E(3, [)) is a measure of how well the filter
"matches” the input image.

» The idea of a matched filter leads naturally to the idea of having
a“dictionary” of filters {§“ : i € N}, where different filters B* are tuned
to different types of image patches. In other words, the input image patch
is encoded by the filter that best matches it. The magnitude of the dot
product B - lis less important than deciding which filter best matches the
input I_;,.

» Matched filters can be thought of an extreme case of sparsity. In the
previous lecture an image was represented by a linear combination of basis
functions whose weights were penalizes by the LI-norm, >, |ci|. By
comparison, matched filters represent an image by a single basis function.
This gives an ever sparser representation of the image, but at the possible
cost of a much larger image dictionary. Matched filters can be thought of
as feature detectors because they respond only to very specific inputs.



K-means (1)

» One way to learn a dictionary of basis functions, for matched filters, is by
using the K-means algorithm. This is a classic clustering algorithm but
there are many others. As we will show, it related to mixtures of Gaussians
and the EM algorithm.

» For simplicity, we will set a=1 and b =0 (i.e. ignore contrast and
background, we will return to them later). Hence we seek a set of basis
functions which minimize E({Bk}) = Z:’Zl ming |l7, — §k|2.

> We can find the dictionary {B*} by the K-means algorithm. This is not
guaranteed to converge to a global minimum, but there are efficient
methods like k++ for initialization. K-means is a clustering algorithm
because it clusters data into different subgroups (one basis for each
subgroup).



K-means (2)

» The input to K-means is a set f unlabeled data: D = {x1,...,xn}. The goal

is to decompose it into disjoint classes wi, ..., wx where k is known. The
basic assumption is that the data D is clustered round (unknown) mean
values my, ..., mg.

» We defines an association variable Vi,. Vi, = 1 if datapoint x; is
associated to mean m, and Vi, = 0 otherwise. we have the constraint
>, Via=1forall i (i.e. each datapoint is assigned to a single mean).
This gives a decomposition of the data. D, = {i : Vj; = 1} is the set of
datapoints associated to mean m,. The set D =, D, is the set of all
datapoints. D, (| Dy = ¢ for all a # b, where ¢ is the empty set.

» We defines a goodness of fit:

EQVIAmY) =2 > Vil —m? =3 > (x—m.)* (1)

i=1 a=1 a=1 xeD,

» The goal of the k-means algorithm is to minimize E({V'}, {m}) with
respect to {V'} and {m}. E(.,.) is a non-convex function and no known
algorithm can find its global miminum. But k-means converges to a local
minimum.



K-means (3)

» The k-means algorithm

> 1. Initialize a partition {D? : a = 1 to k} of the data. (l.e. randomly
partition the datapoints — or use K++).

» 2. Compute the mean of each cluster D,, m, = IDIT\ > xeD, X-

» 3. For i=1 to n, compute d.(x;) = |x; — m,|?>. Assign x; to cluster D,« s.t.
a* = argmin{d.(xi), ..., di(xi) }

» 4. Repeat steps 2 & 3 until convergence.

» This will converge to a minimum of the energy function because steps 2

and 3 each decrease the energy function (or stop if the algorithm is at a
local minimum). This will divide the space into disjoint regions.

» k-means can be formulated in terms of the assignment variable. At step 2,
m, = ﬁ > Viaxi. Atstep 3. Vi, =11f |x; — m;,,|2 = minp |x; — mb\2
and Vi, = 0 otherwise.



Soft K-means. Mixture of Gaussians. (1)

> A "softer” version of k-means — the Expectation-Maximization (EM)
algorithm. Assign datapoint x; to each cluster with probability
(P1y...y P)

» 1. Initialize a partition of the datapoints.

» 2. For j=1 to n. Compute the probability that x; belongs to wa.

1 2
exp — = (xj—ma)
A — 2
P(walx;) = 205 - — .
O —,

> 3. Compute the mean for each cluster: m, = 3°; x;P(walx;)

v

4 Repeat steps 2 & 3 until convergence.

» In this version the hard-assign variable V/, is replaced by a soft-assign
variable P(w,|x;). Observe that )" P(wa|x;) = 1. Also observe that the
softness is controlled by o2. In the limit, as 02 — 0, the distribution
P(walx;) will become binary valued, and soft k-means will be the same as
k-means.



Soft K-means. Mixture of Gaussians. (2)

» Soft k-means can be reformulated in terms of mixtures of Gaussians and
the Expectation-Maximization (EM) algorithm.

» This assumes that the data is generated by a mixture of Gaussian
distributions with means {m} and variance o°l.

POV} {m}) = S exp{— 32, Vi lizgell ),

» This is equivalent to a mixture of Gaussians:
P(x|V,m) = N(x: 3, Viama, o), where the variable V identifies the
mixture component (i.e. Vi, = 1 if datapoint x; was generated by mixture
a).

> We need to impose a prior P({V'}) on the assignment variable V. It is
natural to choose a uniform distribution P(V) =1/Z, where Z is the
number of possible assignments of the datapoints to the means.



Soft K-means. Mixture of Gaussians. (3)

» This gives distributions P(x, {V}|{m}) = P(x|{V},{m})P({V}). This
form enables us to use the EM algorithm (see later lecture).EM will
estimate the mean variables {m} despite the presence of
unknown/missing/latent variables {V'}.

» The EM algorithm can be applied to problems like this where there are
quantities to be estimated but also missing/latent variables. The EM
algorithm can be formulated in terms of minimizing an energy function,
but this energy function is non-convex and EM can be only guaranteed to
converge to a minimum of the energy function and not to a global
minimum. Deriving the soft k-means algorithm by applying the EM
algorithm to P(x|V, m).is left as an exercise for the reader.

» We can extend soft k-means in several ways. The simplest is to allow the
covariances of the Gaussians to differ and to estimate them as well.

» But, more generally, we can have a process P(x, h|f) where x is the
observed data, h is a hidden/missing/latent variable, and 6 are the model
parameters.



Mixture of Von Mises Fisher

» A second example arises if we require that the data has unit norm
|xi| = 1,Vi and hence lies on the unit sphere. This can be used to deal
with the scaling of images. Recall /(x) — al(x) + b, where a is the scale
(contrast) and b is the background. We set b = 0 and normalize the

images by /(x) — |, X)‘ (so that /(x) has unit norm).

> The Von Mises Fisher distribution is P(x)|k, A\x) = W Here

x| = |mg| =1, and oy is a positive constant.
> Note that this distribution is related to the Gaussian distribution (with

spherical covariance). The exponent of this Gaussian is —%. If we
require |x| = |my| = 1, then the exponent becomes Ceme1)  So if we
identify A\x with 1/o7 we recover Von Mises Fisher. In other words, Von
Mises Fisher is the natural way to re-formulate mixtures of Gaussians for

data that lies on the unit sphere.



Mini Epitomes (1)

» This is another way to learn a dictionary with a more complicated
generative model with more hidden variables.. It is motivated by the fact
that images are shift-invariant (unless they are carefully aligned). Recall,
see powerpoints, that we want invariance to /(x) — al(x — xo) + b, where
Xo is a shift.

> Let {x,-},’-\’:l be a set of possibly overlapping patches of size h X w pixels
cropped from a large collection of images.

» Our dictionary comprises K mini-epitomes {4 }5_; of size Hx W, with
H > h and W > w. The length of the vectorized patches and epitomes is
then d = h-w and D = H - W, respectively.

» \We approximate each image patch x; with its best match in the dictionary
by searching over the N, = hp, X w, (with h, = H — h+1,
w, = W — w + 1) distinct sub-patches of size h X w fully contained in
each mini-epitome. Typical sizes we employ are 8 x 8 for patches and
16 x 16 for mini-epitomes, implying that each mini-epitome can generate
N, =9 -9 = 81 patches of size 8 x 8.



Mini Epitomes (2)

» We model the appearance of image patches using a Gaussian mixture
model (GMM). We employ a generative model in which we activate one of
the image epitomes px with probability P(l; = k) = 7k, then crop an
h x w sub-patch from it by selecting the position p; = (x;, yi) of its
top-left corner uniformly at random from any of the N, valid positions.

» We assume that an image patch x; is then conditionally generated from a
multivariate Gaussian distribution
P(X;|Z,', 9) = N(X;; a,'Tpl.M/,. + ﬂ,'l, C?Zo).

» The label/position latent variable vector z; = (/;, x;, yi) controls the
Gaussian mean via v,; = Tp, ;. Here T, is a d x D projection matrix of
zeros and ones which crops the sub-patch at position p; = (x;, y;) of a
mini-epitome. The scalars a; and [3; determine an affine mapping on the
appearance vector and account for some photometric variability and 1 is
the all-ones d x 1 vector. Here X denotes the patch mean value and )\ is a
small regularization constant (we use A = d for image values between 0
and 255).



Mini Epitomes (3)

» We choose mx = 1/K and fix the d x d covariance matrix
}:0—1 = D'"D + ¢l, where D is the gradient operator computing the x— and
y— derivatives of the h X w patch and € is a small constant.

» To match a patch x; to the dictionary, we seek the mini-epitome label and
position z; = (i, xi, yi), as well as the photometric correction parameters
(i, Bi) that maximize the probability, or equivalently minimize the
squared reconstruction error (note that D1 = 0).

» The squared reconstruction error is:
R*(xi; k, p) = % (IID (xi — i Tppi) > + A(Jei| — 1)%), where the last
regularization term discourages matches between patches and
mini-epitomes whose contrast widely differs.



Mini Epitomes (4)

» We can compute in closed form for each candidate match v,, = T, 1, in
%] 07, £\
D;’;Dzrﬁr)\ !

the dictionary the optimal B,- =X — Q&jlz; and &; = where

x; = Dx; and 7;; = Dv;; are the whitened patches.

> The sign in the nominator is positive if % %, > 0 and negative otherwise.
Having computed the best photometric correction parameters, we can
evaluate the reconstruction error R?(x;; k, p).

» In order to learn the parameters we use the EM algorithm.Given a large
training set of unlabeled image patches {x,-},N:I, our goal is to learn the
maximum likelihood model parameters 6 = ({mx, ik } 51 ) for the epitomic
GMM model.. As is standard with Gaussian mixture model learning, we
employ the EM algorithm and maximize the expected complete
log-likelihood.

» The loglikelihood is

L(0) = Z:V:I Zf:l 2_pep ilk,p) - log (TN (%35 @i Tppsk + B’ o)),
where P is the set of valid positions in the epitome.



Mini Epitomes (5)

» In the E-step, we compute the assignment of each patch to the dictionary,
given the current model parameter values. We use the hard assignment
version of EM and set vi(k, p) = 1 if the i-th patch best matches in the
p-th position in the k-th mini-epitome and 0 otherwise.

» In the M-step, we update each of the K mini-epitomes p by
o? _ a; _ -
(0 vk PYHTIET o) e = 5, ks P TS (0 — R01).

» See powerpoints for the results.
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