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Lecture 3

I Learning a Dictionary. Ultra-Sparse dictionary.

I The K-means algorithm.

I Soft-coding: mixture of Gaussians with EM.

I Mixture of Von Mises Fisher.

I Mini-epitomes. Image shifts.



Matched Filters (1)

I Suppose we have a filter ~B and an input image patch ~Ip. We want to find
the best fit of the filter to the image by allowing us to transform the filter
by ~B 7→ a~B + b~e, where ~e = (1/

√
N)(1, ..., 1). This corresponds to scaling

the filter by a and adding a constant vector b. If ~B is a derivative filter
then, by definition, ~B · ~e = 0. We normalize ~B and ~e so that
~B · ~B = ~e · ~e = 1.

I The goal is to find the best scaling/contrast a and background b to
minimize the match:

E(a, b) = |~Ip − a~B − b~e|2.

I The solution â, b̂ are given by (take derivatives of E with respect to a and

b, recalling that ~B and ~e are normalized):

â = ~B · Ip, b̂ = ~e · ~Ip.



Matched Filters (2)

I In this interpretation, the filter response is just the best estimate of the
contrast a. The estimate of the background b is just the mean value of
the image. Finally, the energy E(â, b̂) is a measure of how well the filter
”matches” the input image.

I The idea of a matched filter leads naturally to the idea of having
a“dictionary” of filters {~Bµ : µ ∈ Λ}, where different filters ~Bµ are tuned
to different types of image patches. In other words, the input image patch
is encoded by the filter that best matches it. The magnitude of the dot
product ~B · ~I is less important than deciding which filter best matches the
input ~Ip.

I Matched filters can be thought of an extreme case of sparsity. In the
previous lecture an image was represented by a linear combination of basis
functions whose weights were penalizes by the L1-norm,

∑
i |αi |. By

comparison, matched filters represent an image by a single basis function.
This gives an ever sparser representation of the image, but at the possible
cost of a much larger image dictionary. Matched filters can be thought of
as feature detectors because they respond only to very specific inputs.



K-means (1)

I One way to learn a dictionary of basis functions, for matched filters, is by
using the K -means algorithm. This is a classic clustering algorithm but
there are many others. As we will show, it related to mixtures of Gaussians
and the EM algorithm.

I For simplicity, we will set a = 1 and b = 0 (i.e. ignore contrast and
background, we will return to them later). Hence we seek a set of basis

functions which minimize E({Bk}) =
∑N

n=1 mink |~In − ~Bk |2.
I We can find the dictionary {Bk} by the K-means algorithm. This is not

guaranteed to converge to a global minimum, but there are efficient
methods like k++ for initialization. K-means is a clustering algorithm
because it clusters data into different subgroups (one basis for each
subgroup).



K-means (2)

I The input to K-means is a set f unlabeled data: D = {x1, ..., xn}. The goal
is to decompose it into disjoint classes w1, ...,wk where k is known. The
basic assumption is that the data D is clustered round (unknown) mean
values m1, ...,mk .

I We defines an association variable Via. Via = 1 if datapoint xi is
associated to mean ma and Via = 0 otherwise. we have the constraint∑

a Via = 1 for all i (i.e. each datapoint is assigned to a single mean).
This gives a decomposition of the data. Da = {i : Via = 1} is the set of
datapoints associated to mean ma. The set D =

⋃
a Da is the set of all

datapoints. Da

⋂
Db = φ for all a 6= b, where φ is the empty set.

I We defines a goodness of fit:

E({V }, {m}) =
n∑

i=1

k∑
a=1

Via(xi −ma)2 =
k∑

a=1

∑
x∈Da

(x −ma)2 (1)

I The goal of the k-means algorithm is to minimize E({V }, {m}) with
respect to {V } and {m}. E(., .) is a non-convex function and no known
algorithm can find its global miminum. But k-means converges to a local
minimum.



K-means (3)

I The k-means algorithm

I 1. Initialize a partition {D0
a : a = 1 to k} of the data. (I.e. randomly

partition the datapoints – or use K++).

I 2. Compute the mean of each cluster Da, ma = 1
|Da|

∑
x∈Da

x .

I 3. For i=1 to n, compute da(xi ) = |xi −ma|2. Assign xi to cluster Da∗ s.t.
a∗ = arg min{da(xi ), ..., dk(xi )}

I 4. Repeat steps 2 & 3 until convergence.

I This will converge to a minimum of the energy function because steps 2
and 3 each decrease the energy function (or stop if the algorithm is at a
local minimum). This will divide the space into disjoint regions.

I k-means can be formulated in terms of the assignment variable. At step 2,
ma = 1∑

i Via

∑
i Viaxi . At step 3. Via = 1 if |xi −ma|2 = minb |xi −mb|2

and Via = 0 otherwise.



Soft K-means. Mixture of Gaussians. (1)

I A ”softer” version of k-means – the Expectation-Maximization (EM)
algorithm. Assign datapoint x i to each cluster with probability
(P1, . . . ,Pk)

I 1. Initialize a partition of the datapoints.

I 2. For j=1 to n. Compute the probability that xj belongs to ωa.

P(ωa|xj) =
exp− 1

2σ2 (xj−ma)
2∑

b exp− 1
2σ2 (xj−mb)

2 .

I 3. Compute the mean for each cluster: ma =
∑

j xjP(ωa|xj)
I 4 Repeat steps 2 & 3 until convergence.

I In this version the hard-assign variable Via is replaced by a soft-assign
variable P(ωa|xj). Observe that

∑
a P(ωa|xj) = 1. Also observe that the

softness is controlled by σ2. In the limit, as σ2 7→ 0, the distribution
P(ωa|xj) will become binary valued, and soft k-means will be the same as
k-means.



Soft K-means. Mixture of Gaussians. (2)

I Soft k-means can be reformulated in terms of mixtures of Gaussians and
the Expectation-Maximization (EM) algorithm.

I This assumes that the data is generated by a mixture of Gaussian
distributions with means {m} and variance σ2I.

P(x |{V }, {m}) = 1
Z

exp{−
∑

ia Via
||xi−ma||2

σ2 }.
I This is equivalent to a mixture of Gaussians:

P(x |V ,m) = N (x :
∑

a Viama, σ
2), where the variable V identifies the

mixture component (i.e. Via = 1 if datapoint xi was generated by mixture
a).

I We need to impose a prior P({V }) on the assignment variable V . It is
natural to choose a uniform distribution P(V ) = 1/Z , where Z is the
number of possible assignments of the datapoints to the means.



Soft K-means. Mixture of Gaussians. (3)

I This gives distributions P(x , {V }|{m}) = P(x |{V }, {m})P({V }). This
form enables us to use the EM algorithm (see later lecture).EM will
estimate the mean variables {m} despite the presence of
unknown/missing/latent variables {V }.

I The EM algorithm can be applied to problems like this where there are
quantities to be estimated but also missing/latent variables. The EM
algorithm can be formulated in terms of minimizing an energy function,
but this energy function is non-convex and EM can be only guaranteed to
converge to a minimum of the energy function and not to a global
minimum. Deriving the soft k-means algorithm by applying the EM
algorithm to P(x |V ,m).is left as an exercise for the reader.

I We can extend soft k-means in several ways. The simplest is to allow the
covariances of the Gaussians to differ and to estimate them as well.

I But, more generally, we can have a process P(x , h|θ) where x is the
observed data, h is a hidden/missing/latent variable, and θ are the model
parameters.



Mixture of Von Mises Fisher

I A second example arises if we require that the data has unit norm
|xi | = 1, ∀i and hence lies on the unit sphere. This can be used to deal
with the scaling of images. Recall I (x) 7→ aI (x) + b, where a is the scale
(contrast) and b is the background. We set b = 0 and normalize the

images by I (x) 7→ I (x)
|I (x)| (so that I (x) has unit norm).

I The Von Mises Fisher distribution is P(x)|k, λk) = exp{λkmk ·x}
Z(λk )

. Here

x | = |mk | = 1, and σk is a positive constant.

I Note that this distribution is related to the Gaussian distribution (with

spherical covariance). The exponent of this Gaussian is − (x−mk )
2

2σ2 . If we

require |x | = |mk | = 1, then the exponent becomes (x·mk−1)

σ2 . So if we

identify λk with 1/σ2
k we recover Von Mises Fisher. In other words, Von

Mises Fisher is the natural way to re-formulate mixtures of Gaussians for
data that lies on the unit sphere.



Mini Epitomes (1)

I This is another way to learn a dictionary with a more complicated
generative model with more hidden variables.. It is motivated by the fact
that images are shift-invariant (unless they are carefully aligned). Recall,
see powerpoints, that we want invariance to I (x) 7→ aI (x − x0) + b, where
x0 is a shift.

I Let {xi}Ni=1 be a set of possibly overlapping patches of size h × w pixels
cropped from a large collection of images.

I Our dictionary comprises K mini-epitomes {µk}Kk=1 of size H×W , with
H ≥ h and W ≥ w . The length of the vectorized patches and epitomes is
then d = h · w and D = H ·W , respectively.

I We approximate each image patch xi with its best match in the dictionary
by searching over the Np = hp × wp (with hp = H − h + 1,
wp = W − w + 1) distinct sub-patches of size h × w fully contained in
each mini-epitome. Typical sizes we employ are 8× 8 for patches and
16× 16 for mini-epitomes, implying that each mini-epitome can generate
Np = 9 · 9 = 81 patches of size 8× 8.



Mini Epitomes (2)

I We model the appearance of image patches using a Gaussian mixture
model (GMM). We employ a generative model in which we activate one of
the image epitomes µk with probability P(li = k) = πk , then crop an
h × w sub-patch from it by selecting the position pi = (xi , yi ) of its
top-left corner uniformly at random from any of the Np valid positions.

I We assume that an image patch xi is then conditionally generated from a
multivariate Gaussian distribution
P(xi |zi , θ) = N (xi ;αiTpiµli + βi1, c

2
i Σ0).

I The label/position latent variable vector zi = (li , xi , yi ) controls the
Gaussian mean via νzi = Tpiµli . Here Tpi is a d × D projection matrix of
zeros and ones which crops the sub-patch at position pi = (xi , yi ) of a
mini-epitome. The scalars αi and βi determine an affine mapping on the
appearance vector and account for some photometric variability and 1 is
the all-ones d × 1 vector. Here x̄ denotes the patch mean value and λ is a
small regularization constant (we use λ = d for image values between 0
and 255).



Mini Epitomes (3)

I We choose πk = 1/K and fix the d × d covariance matrix
Σ−1

0 = DTD + εI, where D is the gradient operator computing the x− and
y− derivatives of the h × w patch and ε is a small constant.

I To match a patch xi to the dictionary, we seek the mini-epitome label and
position zi = (li , xi , yi ), as well as the photometric correction parameters
(αi , βi ) that maximize the probability, or equivalently minimize the
squared reconstruction error (note that D1 = 0).

I The squared reconstruction error is:
R2(xi ; k, p) = 1

c2i

(
‖D (xi − αiTpµk)‖2 + λ(|αi | − 1)2

)
, where the last

regularization term discourages matches between patches and
mini-epitomes whose contrast widely differs.



Mini Epitomes (4)

I We can compute in closed form for each candidate match νzi = Tpiµli in

the dictionary the optimal β̂i = x̄i − α̂i ν̄zi and α̂i =
x̃Ti ν̃zi

±λ
ν̃Tzi
ν̃zi

+λ
, where

x̃i = Dxi and ν̃zi = Dνzi are the whitened patches.

I The sign in the nominator is positive if x̃T
i ν̃zi ≥ 0 and negative otherwise.

Having computed the best photometric correction parameters, we can
evaluate the reconstruction error R2(xi ; k, p).

I In order to learn the parameters we use the EM algorithm.Given a large
training set of unlabeled image patches {xi}Ni=1, our goal is to learn the
maximum likelihood model parameters θ = ({πk , µk}Kk=1) for the epitomic
GMM model.. As is standard with Gaussian mixture model learning, we
employ the EM algorithm and maximize the expected complete
log-likelihood.

I The loglikelihood is
L(θ) =

∑N
i=1

∑K
k=1

∑
p∈P γi (k, p) · log

(
πkN

(
xi ;αiTpµk + βi1c

2
i Σ0

))
,

where P is the set of valid positions in the epitome.



Mini Epitomes (5)

I In the E-step, we compute the assignment of each patch to the dictionary,
given the current model parameter values. We use the hard assignment
version of EM and set γi (k, p) = 1 if the i-th patch best matches in the
p-th position in the k-th mini-epitome and 0 otherwise.

I In the M-step, we update each of the K mini-epitomes µk by(∑
i,p γi (k, p)

α2
i

c2i
TT

p Σ
−1
0 Tp

)
µk =

∑
i,p γi (k, p)αi

c2i
TT

p Σ
−1
0 (xi − x̄i1).

I See powerpoints for the results.
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