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What Have Deep Nets done to Computer Vision?

 Compared to human observers, Deep Nets are brittle and rely heavily
on large annotated datasets. Unlike humans, Deep Nets have
difficulty learning from small numbers of examples, are oversensitive
to context, have problems transferring between different domains,
and lack interpretability.

* Ho well do Deep Networks really perform? Are our current methods
for testing them adequate? Can they deal with the combinatorial
complexity of real world stimuli?

* Alan Yuille and Chenxi Liu. “Deep Networks: What have they ever
done for Vision?”. Arxiv. 2018.



The Fundamental Problem

* Current methods for evaluating algorithms are highly problematic.

* They are based on machine learning concepts — balanced finite-size
training and test sets — which are often not appropriate for real world
situations. They favor regression algorithms — e.g., deep networks —
which risk overfitting the datasets (both the testing and training sets).

* They can succeed by exploiting biases in the datasets. All datasets
have some biases. The dataset should be sufficient to represent the
complexity of the real world and natural images. But this complexity
is so big that finite-sized datasets may be insufficient to capture it.



Two Issues

* How to learn models that generalize from one dataset to another
with, if possibly, limited training?

* How to test models for performance that works in real world
conditions, i.e. not just on the datasets it is trained on?

* These are two separate questions. This lecture will mainly focus on
the second — but these issues has big implications for what types of
algorithms computer vision researchers should use.



Examples: from meetings last week.

* GBO exam. Counting the number of people in images. Three datasets.
Fairly good performance on all datasets. But algorithms trained on
one dataset do not transfer to other datasets.

 MIT Technology Article: The Al developed by Google Health can
identify signs of diabetic retinopathy from an eye scan with more
than 90% accuracy—which the team calls “human specialist level” —
and, in principle, give a result in less than 10 minutes. The system
analyzes images for telltale indicators of the condition, such as
blocked or leaking blood vessels. The system worked well on datasets
in Google, but mostly failed on real patients in Thailand.



Why don’t results transfer?

e Case Study: Edge Detection — Sowerby and South Florida datasets.

* Sowerby Images — English Country Scenes: significant texture in
background, edges not very sharp. (figure top left: left panel)

* South Florida dataset — Mostly indoor images: texture regions removed,
edges very sharp (step like). (figure top left: right panel).

* Different types of image statistics.

* But transfer is possible with generative methods (Konishi et al.) P(f| on-
edge) P(f| off-edge). The statistics P(f| off-edge) differ between datasets but
can assume that P(f|on-edge) is similar. Exploit fact that most image pixels
are off-edge.

* See Konishi et al. 2003. Handout: edge detection lecture in this course.



* Bias of context, viewing conditions.

* Rare events. Corner cases. “In the real world everything is a corner
case” (Anonymous annotator at a DARPA presentation).

* Background/context bias (see figure top right).

 Caltech 101: fish are the only objects which occur in water (i.e. can
detect fish by detecting water).

* UFC activity classification dataset: boxing occurs in a boxing ring —
detecting the boxing ring detects boxing (see later).

* Many rockstars are photographed with guitars. But a guitar is not a
Rockstar (see presentation later in this lecture).

e A. Torrabla & A. Efros. Unbiased Look at Dataset Bias. CVPR. 2011.



Virtual Data: Making Controlled Datasets

* Tools like UnrealCV enable us to generate datasets which have many
annotations and which test algorithms systematically.

* This enables us to stress test algorithms in challenging conditions.

UnrealCV: Weichao Qiu

¢ UnrealCV: http://unrealcv.org/
* Weichao Qiu

* UnrealCV is a project to help computer vision researchers build virtual
worlds using Unreal Engine 4 (UE4). It extends UE4 with a plugin by
providing:

* (i) A set of UnrealCV commands to interact with the virtual world.
* (ii) Communication between UE4 and external programs like Caffe.



Using Virtual Stimuli to Stress-Test Algorithms.

* Object detection algorithms (W. Qiu & A.L. Yuille. ECCV workshop 2016).
* E.g., Sofa detectors trained on ImageNet mav not work on other data.

E Elevation Azimuth | g0 ya5 g0 995 970
A 0 C 0713 0.769 0.930 0.319
' 30 0.900 1.000 0.588 1.000 0.710

60 0.255 0.100 0.148 0.296 0.649

Table 1. The Average Precision (AP) when viewing the sofa from different viewpoints.
Observe the AP varies from 0.1 to 1.0 showing the sensitivity to viewpoint. This is per-
Fig. 4. Images with different camera height and different sofa color. haps because the biases in the training cause Faster-RCNN to favor specific viewpoints.

* Stress-test binocular stereo. Yi Zhang et al. UnrealStereo. 3DV. 2018.
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Synthetic Data: Activity Recognition

Activity Recognition is a visual task which is at big risk for combinatorial complexity.
Synthetic Data can be used to explore this.

We render some synthetic videos of humans punching. Train state-of-the art activity
recognition methods (TSN and 13D) on these tasks using the USC101 activity dataset.

TSN

Punching 0.00 0.00
13D Punching bag 6.25 41.67
13D Punching person 6.25 31.25

Why are the Deep Nets (TSN and I3D) so bad at generalizing to the synthetic data?

(There are problems for alﬁprithms trained on real to generalize to synthetic, but they
are not usually as bad as this).



Why TSN fail to recognize synthetic punching ?

* Conjecture: TSN model trained on UCF101 (right) may have overfit to
background and are unable to localize punching action. Synthetic data
consists of a single boxer (left).

* VVideos from this class in UCF101 are mostly boxing games and
punching sandbags.




Can the TSN correctly localize the punching action ?

* Class Activation Maps (CAM) are a standard technique to detect the
discriminative image regions used by a CNN to identify a specific
activity class.

* CAMs of punching videos from UCF101 test set — detecting ropes.




Understanding Scenes

* Volleyball Spiking:

 The model is unable to localize the spiking action in time. It relies on
context, i.e. the ability to recognize the scene of volleyball games.



Can you simply make the dataset bigger?

* Thought experiment: for object recognition (unoccluded) the dataset
should take into account all the possible viewing conditions (lighting,
viewpoint, material, local background).

* From a computer graphic perspective. A model for rendering a 3D
virtual scene into an image will have several parameters: e.g.,. camera
pose, lighting, texture, material and scene layout. If we have 13
parameters, see next slide, and they take 1,000 values each then we
have a dataset of 10739 images.

* This is a very large number. (Need a model that understands how the
data was generated -- i.e. the underlying 13 dimensional space).



Images from synthesized computer graphics model.
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Occlusion

e If you allow occlusions, then the number of possibilities increases exponentially.

e Thisis a problem if we are testing by random sampling: what is the probability that our samples occur in
the problematic situations.

16



More generally

* What happens if you want to classify a visual scene? There are
combinatorial number of ways of constructing visual scenes.

* How can evaluate tasks like image captioning which, in principle,
could depend on all the objects present in the image and their precise
configurations? How to distinguish between “man kicks dog” and
“dog bites man”?

* How can you evaluate activity recognition, which sequences, which
involves image sequences over time?



What to do?

* |gnore the problem — publishing papers requires good performance on
benchmarked datasets (Hinton’s tables). This has some value, it shows that
your algorithms work within the domain represented by the dataset, but
you should not fool yourself into thinking you have solved the problem!

* Acknowledge the problem — but do nothing, what is there to do? | need
publish papers to graduate (if student) or to get new grants (if professor).

* Create challenges that test the algorithms in different ways. Identify
abilities which you want to vision algorithms to have (examples later).

* Create alternative ways to testing algorithms — e.g., sequential tests which
probe the algorithms to detect weak points, instead of testing with random
samples.



Create challenges: motivated by Human Vision

* The human visual system is far superior to current state-of-the-art computer
vision algorithms and, in particular, outperforms them in several dimensions:

* (i) Generality: the ability to address multiple visual taskstie.g., detect objects,
t

parse them into parts, estimate their 3D configurations, find their boundaries)

* (ii) Efficiency: learning from few examples by exploiting prior knowledge and
physical properties of the world,

* (iii) Robustness: to viewpoint and challenging viewing conditions, to novel
context, occlusion (including several objects overlapping as in Captchas), and to
small changes in images which confuse deep networks but do not fool humans,

* (iv) Doman Transfer: deep networks typically perform well only on datasets they
have been trained on, but humans can learn on one image domain (e.g., real
|magehs, line drawings, computer graphics stimuli, and visual art) and perform well
on others.



Make the Datasets bigger and adaptive.

* Classic example — hard negative mining. This was very important for
detecting faces and text in real images. Easy to get realistic finite-sized
training set of positives examples (faces and text) but how to get
negative examples? There are so many.

* Solution: keep expanding the dataset. Initialize with positive and
negative training examples. Train your algorithms. Run them over
large datasets. Indentity the false positives, put them into your set of
negative examples. Retrain your algorithm. Repeat.

* Arguably, “robust” methods for dealing with imperceptible
adversarial attacks are following this strategy.



But to go further.

* Let your worst enemy test your algorithm!

* Allow the examiner to ask a sequence of questions, where each
guestion depends on the answer to the previous questions. This
enable the examiner to test over an exponential space (like decision
trees can test 2n possibilities with only n questions).

* This is a type of Turing test. Where the examiner can alter the image
to find weaknesses of the algorithms.

* Note: testing on random samples (as in machine learning) is not a
smart strategy. No teacher would use it to test the knowledge of his
students. No engineer would use it to test an advanced machine, like

a car or an airplane.



