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DeepNets for Joint-Types.
Pictorial Structures for Spatial Relations.

* Train DeepNets to detect/hypothesize positions and types of joints.
* Use graphical models to reason about spatial relations of joint types.

* Note: Joint-type predicts direction, distance, and type of neighboring
joints. (Xianjie Chen and A. Yuille 2014).

* Psychophysics: Kersten et al. (2016).
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From 2D to 3D: Joints

e Estimate 3D from 2D.

(1)

* Detect joints in 2D.
* Requires a prior on 3D shape of joints.

* Learn prior from dataset of 3D poses.

* PCA? —too many bases — not a linear space.

2D Pose

 Sparsity — not tight — impossible poses can have low encoding costs.

* Sparsity + limb length ratios —better (Chunyu Wang et al. 2014).

* But not generative and lacks geometric intuition.




Encoding 3D poses: Action recognition

* Learn a representation of 3D pose. (Chunyu Wang et al. 2016)

* The representation is generative. We can sample from it and obtain
realistic poses.

* It is a variant of sparsity which involves modeling the manifold of
poses by a set of simplices.



Geometric Interpretation of Sparse Coding.

* Problem: Surely the 3D poses of joints lie on a manifold (e.g., L.
Agapito et al). What do manifolds have to do with sparsity?

* Sparse coding: ||5“—i“fl“f||2+*i|“f|-

* Data y, Bases x, Coefnuent?émna, pen!;llty lambda.
e Quadratic Penalty plus L1 regularizer.

* Learning a sparse dictionary from data {y}:
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Geometric Interpretation

* Fix the sum of alphas. Then set of points X alpha is a convex hull of
the bases X.
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Learning Sparse Dictionary "'

* Normalize the data to lie on the unit sphere.
* Fix the radius of convex hull.
* Then learning a sparse dictionary corresponds to projecting data
onto the boundary of the convex hull.
Henc.e on.to a subset of the bogndary simplices. \h\ /«/ \
* Exploit this fact. Standard sparsity encodes all \Y \ Jo
the data within the convex hull. N _//
* Instead only encode data by boundary simplices. / /\. 1/#\"

Constraints on the co-activation of bases. \/ \_/



Activated Simplices: Algorithms

* |dentify a subset of boundary simplices which encode the data. Bias
towards boundary simplices which have low-dimensions and which contain
many datapoints,

* Algorithm |: Learn the convex hull (bases) that minimize the projection
error. Variant of spare coding algorithms.

* Algorithm II: Identify boundary simplices which have low-dimension and
which encode large numbers of datapoints. Clustering algorithm.

* Output: a set of Activated Simplices.

* Note: both algorithms address non-convex problems so only local minima
can be guaranteed.



Represent Manifold by activated simplices.

 The manifold of poses (projected onto sphere) is represented by a set
of simplices.

* Note that activated simplices allows the manifold to be disconnected

and to have variable dimension.
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* Note: combhter graphics_ represents 3D geometry by simplices.
* Note: prior work on representing manifolds by simplices.




Generative Model: Tight Representation.

* To sample from Activated Simplices.
* Learn a Dirichlet distribution for the datapoints on each activated simplex.
* (1) Select an activated simplex at random.

* (I1) Sample a point within the activated simplex from Dirichlet distribution.
Project onto sphere.

BT
* The samples are realistic poses.

* The representation is tight. t - mk 5. taking phote ,,h vo  posieg
* Can validate by reconstruction from noisy/contaminated data.



Synthesize 3D poses

« Synthesize humans.
* Dirichlet distributions
for positions on simplex.

eating smoking taking photo phoning posing

Figure 13: Synthesized human poses (in green) are over-
laid with their nearest neighbours (in black) in the training
dataset. The actions of the nearest neighbours are shown in
the texts below the poses. We can see that the synthesized
poses differ from the training data but they are still realistic
which shows the simplices’ generalization properties.



Reconstruct occluded poses

* Blue dots are missing points.

» Black are the reconstruction @) 5%\ f ﬁ /
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Action Recognition

« Use activated simplices for classification of actions.

Table 2: Action recognition accuracy on MSR-Action3D.

Methods Accuracy (%)
Sparse Coding 80.22
Action Graph on Bag-of-3D joints | | ‘] 74.70
Actionlet Ensemble [ ] 88.20
Spatial-Temporal-Part model | ] 90.22
Our Approach 91.30




Advantages of Activated Simplices.

* Tight representation — anything that can be represented cheaply by
activated simplices is a legitimate human pose. (Learning based).

* The representation can be use for multiple tasks. Only needs a simple
classifier for each task.

* For example, action classification — learn a Manifold of Activated
Simplices for each action. Classify an input sequence by finding the
manifold closest to the data.




Pose-Snippets

* Pose-snippets are sequences of poses. E.g., ten consecutive poses.

e Can apply activated simplices to pose sequence.

* Single poses can occur in many different actions. But pose-snippets are
more discriminative between sequences. (Also sample from them).
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* Actors perform actions in diffeiciic suyics, specus, anu wiur vuuicr
poses.
* Limited amounts of training data.

* Key-point motifs. A set of ordered poses which are close, but not
necessarily adjacent, in an action sequence.

* A key-point motif is adaptive to the input sequence and is robust to
variations in speed and style. Also insensitive to outliers.

* Chunyu Wang et al. 2016B



Mining Key-Point motifs

* Compose elementary sequences to form larger sequences.
* Algorithm: use dynamic programming, exploit the linear structure.
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11 14
el S

e

§ A T
TN 3%
3| : Ll e
| FRR 4 i
A Gl

R |
% Ll s

— hand clap

— tennis swing
[

;
i
w3

/ky!—'-—l—!—l—l—J
.

oy

i

— two hand wave

e
B B e S F _

5 : LE
R v iy
| | LT Lo 1.1
* N ey =]
i | *
T4
v

— side kick
e

— glof swing




Key Point Motifs

e Strategy: find small key-point-motifs, compose them recursively to

find bigger ones.

Algorithm 1 Key-pose-motif Mining Algorithm

1: T'={1-motifs}
2. for (k = 2; T*1 2 0; k++) do
% TF =expand(TF 1)

4 for(i=1:1< |T}‘" si++) do

5 support=0

6: for (j =1:7 < |D|; j++) do
7: support=support+7(t%, D;)
8: It 55" < e

0: Tk « Tk — [tk}

10: endif

11: end for

12: end for

13: end for
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Key Point Motifs

* Intuitively learn “fuzzy templates” for sequences of human poses.

* Fuzzy because we allow variability in time distance between adjacent
frames in the motif. Robust.

* Adapts to new data. Needs little training data.
* Good results on benchmarked datasets.



