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Motivation — Generalization under occlusion is important

* |In natural images objects are surrounded and partially occluded by other objects
* Occluders are highly variable in terms of shape and texture -> exponential complexity

* Vision systems must generalize in exponentially complex domains



Motivation — A Fundamental Limitation of Deep Nets

* DCNNs do not generalize when trained with non-occluded data
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A Generative Model of Neural Feature Activations

Fully connected { | | 14
classification head

Convolutional layers <




A Generative Model of Neural Feature Activations
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Inference as Feed-Forward Neural Network
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Learning the Model Parameters with Backpropagation
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Explainability - vMF Kernels resemble ,part detectors”
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Explainability — Network Dissection
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Explainability — Mixture components model object pose
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* Images with highest likelihood for mixture components:
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Explainability — Mixture components model object pose
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Explainability — Mixture components model object pose
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Occlusion modeling
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Occlusion modeling
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* We introduce an outlier model:
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* A simple model of how the object does not look like:
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Competition between object and outlier model
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Quantitative Evaluation of Occluder Localization

Occlusion Localization
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CompNets can classify partially occluded vehicles robustly

Occ. Area LO | L1 | L2 | L3 | Avg
VGG 97.8 | 86.8 | 79.1 | 60.3 | 81.0
ResNet50 98.5 | 89.6 | 84.9 | 71.2 | 86.1
ResNext 98.7 | 90.7 | 85.9 | 75.3 | 87.7
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ImageNet 50 classification under occlusion
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ImageNet 50 classification under occlusion

[/

ImageNet under Occlusion
Occ. Area 0% |30% |50% |70% | Avg
ResNext 98.4 | 69.3 |48.7| 31 |61.9
CompNet-ResNext | 96.3 | 76.6 | 60.1 | 45.5 | 69.6
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DCNNs for object detection also do not gernalize well
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Context has too much influence when object is occluded
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Seperate the representation of context and object

* We introduce a context-aware object model:
p(fp|¢4g:/ya X;rfyaA) —Ww p(fp|ng’y, A)+(1- W)p(fp|AgyaA)

* Segment the image during training:
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Context-awareness Improves Localization
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Explainability- Occluder localization in Object detection
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Detection Results

method light occ. | heavy occ.
Faster R-CNN 13.8 55.2
Faster R-CNN with reg. 74.4 56.3
Faster R-CNN with occ. 77.6 62.4
CA-CompNet via BBVw =0.5| 78.6 TGl
CA-CompNet via BBVw = 0.2 87.9 78.2
CA-CompNet via BBVw =0 85.6 759

29



Conclusion

* Partial occlusion introduces exponential complexity in the data

* The complexity gap can be overcome by introducing prior knowledge about
compositionality, partial occlusion and context into the neural architecture

* Generalization beyond the training data in terms of partial occlusion & context

 Retain high discriminative performance due to end-to-end training

* Future work: Articulated objects, 3D geometry, top-down reasoning, scale, ...



