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Summary

* This talk describes recent work on detection and parsing visual
objects. The methods represent objects in terms of object parts
encoding spatial relations between them.

* We use deep convolutional neural networks (DCNNs) to make
proposals for detecting the object parts.

* We will use graphical models to reason about spatial relations.
* We extend to graphical models that deal with occlusion.



Compositional Strategy

e Deep Convolutional Neural Networks (DCNNs) have been extremely
successful for many visual tasks — such as object detection.

 But DCNNs are complicated “black boxes” and it is hard to understand
what they are doing. They do not have explicit representations of
object parts and the spatial relationships between them.

e Our strategy is to represent objects in terms of compositions of object
parts. DCNNs are trained to detect parts. Then we use explicit
graphical models — including AND/OR graphs — to encode spatial
relations and to enable part sharing.



Parsing Human — Joint Detection

* In this project, the parts are joints (e.g., elbows, wrists, shoulders,...).

e Graphical models are used to represent spatial relationships between
the parts.

e Part sharing is used to enable efficient inference when the human is
occluded.

e X. Chen and A.L. Yuille (NIPS 2014, CVPR 2015).



Introduction

 Task is to estimate articulated human pose from a single
static image.




1 Image Dependent Pairwise Relations (IDPRs)

Intuition: We can reliably predict the relative positions of a part's
neighbors (as well as the presence of the part itself) by only observing

the local image patch around it.
We specify a graphical model for human pose with novel pairwise

relations that make adaptive use of local image measurements.
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d DCNN for Image Dependent Terms

Require a method to extract information about pairwise part
relations, as well as part presence, from local image patches.

Deep Convolutional Neural Network (DCNN) is suitable for this, since
it is efficient and share features between different parts and part

relationships.




Performance Summary

State of the Art Performance
Our model combines the representational flexibility of graphical

models with the efficiency and statistical power of DCNNs.
Significantly outperforms the state of the art methods on the LSP

and FLIC datasets and also performs very well on the Buffy dataset
without any training on it.



The Graphical Model
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DCNN for Image Dependent Terms

- Appearance terms ¢(.|.;: @) and IDPR terms ¢(.|.;0) depend on the image.
- We use DCNN to learn the conditional probability distribution p(c, m.y(.)|I(1;); @) defined on the space|S|, where each
element corresponds to a part with all the types of its pairwise relationships, or the background.
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Inference

Dynamic programming + Distance Transform: O(T?LK)

L: # of locations, K: # of parts, T: # of pairwise types
Image Dependent Terms are efficiently calculated by a

single DCNN at all locations.
The computations common to overlapping regions are shared by
considering fully-connected layers as 1x1 convolutions.



Relationship to other models

Pictorial Structure (PS)
Recover PS by allowing one pairwise relation type, i.e., 1;; = 1
We use DCNN to learn data term instead of HOG filters.

Yang and Ramanan’s Mixtures-of-parts (MOP) [26]

MOP defines different “types” of part by its relative position with
respect to its parent.

Recover MOP by restricting each part in our model to only predict
the felative position of its parent, i.e., 1;; = 1 if 7 is not parent
of 7.

Conditional Random Fields (CRFs)

Related to CRFs literature on data dependent priors.
Efficiently model all the image dependent terms in a single DCNN.



Learning

Supervised learning by deriving pairwise type labels from
the annotated part (joint) locations by clustering.

Learn three sets of parameters:

Mean relative positions r of different pairwise relation types, by K-
means clustering.

Parameters 6@ of image dependent terms, by DCNN.

Weight parameters W/, by linear SVM.



Benchmark Performance

d LSP

Method Torso Head U.arms L.arms Ulegs L.egs  Mean
Ours 92.7 87.8 69.2 55.4 82.9 77.0 75.0
Pishchulin et al. [16] 88.7 85.6 61.5 44.9 78.8 73.4 69.2
Ouyang et al. [14] 85.8 83.1 63.3 46.6 76.5 72.2 68.6
DeepPose* [23] - - 56 38 77 71 -

Pishchulin et al. [15] 87.5 78.1 54.2 33.9 75.7 68.0 62.9
Eichner&Ferrari [4] 86.2 80.1 56.5 37.4 74.3 69.3 64.3
Yang&Ramanan [26] 84.1 77.1 52.5 35.9 69.5 65.6 60.8

Table 1: Comparison of strict PCP results on the LSP dataset. Our method improves on all
parts by a significant margin, and outperforms the best previously published result [1] by
5.8% on average. Note that DeepPose uses Person-Centric annotations and is trained with
an extra 10,000 images.

= Two recent ECCV'14 papers, Kiefel&Gehler and Ramakrishna et al., also
report performance on the LSP dataset, and our performance is better.



J FLIC

Method U.arms L.arms Mean
Ours 97.0 86.8 91.9
MODEC [20] 84.4 52.1 63.3

Table 2: Comparison of strict PCP results on
the FLIC dataset. Our method significantly
outperforms MODEC [20].
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Figure 1: Comparison of PDJ curves of elbows
and wrists on the FLIC dataset. The legend
shows the PD.J numbers at the threshold of 0.2.



Datasets

(J Leeds Sports Poses (LSP) dataset: 1000 training and 1000
testing full-body human poses.

J Frames Labeled In Cinema (FLIC) dataset: 3987 training
and 1016 testing upper-body human poses.

J Buffy Stickmen dataset: 276 testing upper-body human
poses. We do not train on this dataset.




Diagnostic Experiments
J Terms Analysis

Method Torso Head U.arms L.arms U.legs L.legs Mean
Unary-Only 56.3 66.4 28.9 15.5 50.8 45.9 40.5
No-IDPRs 7.4 74.8 60.7 43.0 73.2 65.1 64.6
Full Model 92.7 87.8 69.2 55.4 82.9 77.0 75.0

Table 3: Diagnostic term analysis strict PCP results on the LSP dataset. The unary term
alone is still not powerful enough to get good results, even though it's trained by a DCNN
classifier. No-IDPRs method, whose pairwise terms are not dependent on the image, can get
comparable performance with the state-of-the-art, and adding IDPR terms significantly boost
our final performance to 75.0%.



J Cross-dataset Generalization

Method U.arms L.arms Mean o o e I TE!HS i
Ours* 96.8 80.0 929 i S v gl
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Eichner [5] 03.2 60.3 76.8 Figure 2: Cross-dataset PDJ curves on Bufly

test subset. The legend shows the PDJ numbers
Table 3: Cross-dataset PCP results on Buffy at the threshold of 0.2. Note that both our
test subset. The PCP numbers are Buffy PCP  method and DeepPose [23] are trained on the
unless otherwise stated. FLIC dataset.

* Compared with Figure 1., the margin between our method and
DeepPose significantly increases in Figure 2., which implies that our
model generalizes better to the Buffy dataset.



Parsing People by Flexible Compositions. (Chen
and Yuille CVPR 2015).

* In realistic images many object parts are occluded.
* Previous graphical model are robust to only a few occlusions.
* Prior — observed nodes of graphical model are often connected.

e Strategy: extend the method used in NIPS 2014 to deal with
occlusion.



Full Graph Flexible Compositions

Figure 1: An illustration of the flexible compositions. Each con-
nected subtree of the full graph (include the full graph itself) is a

flexible composition. The flexible compositions that do not have
certain parts is suitable for the people with those parts occluded.



Figure 2: Motivation. (a): In real world scenes, people are usually significantly occluded (or truncated). Requiring the model to localize a

fixed set of body parts while ignoring the fact that different people have different degrees of occlusion {(or truncation) is problematic. (b):
The absence of body parts evidence can help to predict occlusion, e.g., the right wrist of the lady in brown can be inferred as occluded

because of the absence of suitable wrist near the elbow. However, absence of evidence is not evidence of absence. It can fail in some
challenging scenes, for example, even though the left arm of the lady in brown is completely occluded, there is still strong image evidence
of suitable elbow and wrist at the plausible locations due to the confusion caused by nearby people (eg., the lady in green). In both
situations, the local image measurements near the occlusion boundary (ie., around the right elbow and left shoulder), e.g., in a image
patch, can reliably provide evidence of occlusion.
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Figure 3: Different occlusion decoupling and spatial relationships
between the elbow and its neighbors, i e., wrist and shoulder. The
local image measurement around a part (e g., the elbow) can reli-
ably predict the relative positions of its neighbors when they are
not occluded, which is demonstrated in the base model [5]. In
the case when the neighboring parts are occluded, the local image
measurement can also reliably provide evidence for the occlusion.



Model

e Base Model: as before.
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Inference

* There are many different models — no. of connected subtrees of the
graph.

e But inference is efficient because of part-sharing.
* Inference is only twice the complexity of the base model:

' O(2T*LK)



Evaluation

e “We Are Family” (WAF) Dataset
e 525 images, six people per image on average. (350/175 train/test).

Method | AQP Torso Head U.arms L.arms mPCP
Ours 54.9 88.5 08.5 77.2 71.3 80,7
Multi-Person [“] | 80.0 86. 1 97.6 68.2 48.1 69.4
Ghiasiet. al. [ ] 74.0 - - - - 63.6
One-Person [V] | 739 83.2 97.6 56.7 28.6 58.6

Table 1: Comparison of PCP and AOP on the WAF dataset.
Our method improves the PCP performance on all parts, and sig-

nificantly outperform the best previously published result [?] by
11.3% on mean PCP, and 4.9% on AOP.



Diagnostics

Method AQP Torso Head Ll.arms L.arms mPCP
Base Model [ ] 73.9 81.4 02.6 63.6 47.6 66.1
FC 2.0 87.0 08.6 12,7 67.5 T7.7
FC+HIDOD 4.9 88,5 08.5 71.2 71.3 8.7

Table 2: Diagnostic Experiments PCP and AOP results on the
WAF dataset. Using flexible compositions (i.e., FC) significantly
improves our base model [5] by 11.6% on PCP and 8.1% on AOP.
Adding IDOD terms (FC+IDOD:s, i.e., the full model) further im-
proves our PCP performance to 80.7% and AOP performance to
84.9%, which is significantly higher than the state of the art meth-
ods.



Figure 5: Results on the WAF dataset. We show the parts that are inferred as visible, and thus have estimated configurations, by our model.



From 2D to 3D.

(1) |

* Pose detection — with and with occlusion.

* Prior — connected parts — for occlusion (validated on WAF)
e Efficient inference despite occlusion — due to part sharing.

* Note: detection of pose is important for many applications.

E.g., estimating of 3D structure (C. Wang et al. 2014), action
recognition (C. Wang et al, 2013, 2014).

Collaboration with Peking University.




Summary of Part |: Parsing Humans -- Joints

* Detection of object parts (joints) in presence of occlusion. DCNNs for
detecting parts, graphical models to impose spatial relations, efficient
inference using dynamic programming.

* The detected parts can be used to estimate 3D structure of humans
from a single image and enable action recognition.

e Limitations. Objects are represented in terms of joints only. This
becomes problematic in some human configurations.



Papers Cited.

e X. Chen and A.L. Yuille. Articulated Pose Estimation with Image-
Dependent Preference on Pairwise Relations. NIPS 2014.

e X. Chen and A.L. Yuille. Parsing Occluded People by Flexible
Compositions. CVPR 2015.

 C. Wang, Y. Wang, Z. Lin, A.L. Yuille, and W. Gao .Robust Estimation of
3D Human Poses from Single Images . CVPR. 2014.
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