Compositional (Semantic) Models and
Unsupervised Graph Structure Learning.



Plan of Lecture

(1) Representing Objects by Hierarchical
(Semantic) Compositional Models.

(2) Unsupervised Structure Learning.

Note: “semantic” is used to mean that the parts
are interpretable (i.e. not just top-right of object)
and “semantic composition” means that an
object, or part, is composed of interpretable
parts or subparts (i.e. not just mathematical
composition).



(1). Objects and Semantic Parts

* Objects can be represented by parts and their
spatial relations (Pictorial Structures: left).

* Hierarchical semantic compositional models:
objects, parts, subparts (right).




Hierarchical Compositional Models

Properties:

The models are explainable/interpretable. If
an object is detected you can explain which
parts and subparts are present.

The model performs multiple tasks —
detect/recognize/localize objects,
detect/recognize/localize parts/subparts,
detect/localize the object boundaries.

Many advantages — but many challenges.




HCMs

~ormally, HCMs can be represented by
nierarchical graph structures.

Relations to Deep Networks.

The parts/subparts and relationships between
them need to be learnt.

Inference is bottom-up and top-down. And
requires sideways/lateral reasoning.

Explicit/interpretable — advantages for out-of-
distribution learning and domain adaptation.

Cognitive Science and Neuroscience justification.




Hierarchical Models

Why Hierarchies?

Mimics the structure of the human/primate
visual ventral system.

Follows the low-, middle-, high-level nature of
vision.

Low-level vision is ambiguous. High-level vision
exploits context and is un-ambiguous.

Optimal design for representing, learning, and
retrieving image patterns?



Grammars/Compositional Models

* Explicit Representations — ability to perform
multiple tasks.

* Sharing — efficiency of inference, efficiency of
learning.

e Relates to Stochastic Grammers used in
Natural Language Processing.



A Probabilistic Model is
defined by four elements

(i) Graph Structure — Nodes/Edges -- Representation
(ii) State Variables — W —input |. --Representation
(ii) Potentials — Phi -- Probability

(iii) Parameters/Weights — Lambda — Probability

The state variables are defined at the graph nodes.

The potentials and parameters are defined over the
graph edges — and relate the model to the image |.



The Mathematics

e The mathematical formulation.

 Exponential models.

Graph : (V.€) : V nodes, £ edges. V': nodes level 1.
Children ch(u) ¢ V!, siblings sib(u) C V.
State variables : w, W), Weey,) states of children and siblings.

Vertical Potentials ¢V(w”. Wen(w)) - Weights ,\::.
Horizontal Potentials ¢ (w),, wae,)) : Weights A7
Data Potentials ¢”(wy, I) : Weights A7
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Tasks:

* (1) Inference — estimate the state W from input | —
assuming known Graph Structure, Potentials and
Parameters. (Intuitively: propagate hypotheses
up the hierarchy and validate them top-down —
dynamic programming as a special case).

* (II) Learning Parameters/Potentials — assuming
known Graph Structure. (Straightforward if
inference can be done).

* (1) Structure Induction — learn the Graph
Structure. (Second half of Lecture)



Key Idea: Compositionality

* Objects and Images are constructed by compositions
of parts — ANDs and ORs.

* The probability models for are built by combining
elementary models by composition.

* Efficient Inference and Learning.

Object A




Why compositionality?

(1). Ability to transfer between contexts and generalize or
extrapolate (e.g., from Cow to Yak).

(2). Ability to reason about the system, intervene, do diagnostics.

(3). Allows the system to answer many different questions based
on the same underlying knowledge structure.

(4). Scale up to multiple objects by part-sharing.

“An embodiment of faith that the world is knowable, that one can
tease things apart, comprehend them, and mentally recompose
them at will.”

“The world is compositional or God exists”.



Horse Model (ANDs only).

Nodes of the Graph represents parts of the object.
Lower level parts are edges and edge-groupings.

Parts can move and deform.

y: (position, scale, orientation)
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AND/OR Graphs for Horses

Introduce OR nodes and switch variables.

* Settings of switch variables alters graph topology
— allows different parts for different
viewpoints/poses:

Mixtures of models — with shared parts.
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AND/OR Graphs for Baseball

* Enables RCMs to deal with objects with
multiple poses and viewpoints (~100).

* Inference and Learning by bottom-up and top-
down processing'




Results on Baseball Players

e Performed well on benchmarked datasets.
e Zhu, Chen, Lin, Lin, Yuille CVPR 2008, 2010.
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Conclusion (1): Challenges of HCMs?

 HCMs are significantly more complex than Deep
Networks, in terms of inference and learning
algorithms. Structure learning is particularly difficult
(second half of lecture).

e But their advantages — interpretability, multi-tasking —
and their potential — ability to deal with domain
transfer and sophisticated attacks — are so strong that
this class of models should be pursued.

* Later lectures will discuss recent developments which
combine HCMs with Deep Network Features.



(2) Unsupervised Structure Learning

* This is an extremely challenging task. The
work described is by two extremely strong
students/postdocs — Long (Leo) Zhu and
Yuanhao Chen (who are the driving forces
behind the Al company YiTu).

* |ntuition for structure learning: Clustering.



Generative Models and Images

Learning Generative Models of entire images
is too hard at present — cf. special cases.

Structure Induction is very hard.

To simplify: use generalize models for simple
features.

(i) Interest Points (IPs). Described by SIFT.
(ii) Edgelets.
Learn models for objects (not images).



Unsupervised Structure Induction.

The Challenge:
We do not know the graph structure.

We do not know if an object is present in the
Image.

We do not know how many types of objects
can be present in the image.

We do not know what IPs are object’ or
"background’.

We do not know the correspondence between
image IP’s and the graphical model.



Probabilistic Graphical Mixture Model (1)
e L.Zhu, Y. Chen, and A.L. Yuille. PAMI. Jan. 20009.
 Dataset — Caltech.

@ The input data is a set of natural images;
@ The output of model a structure like following I
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PGMM 2.

* The object has a cluttered/noisy background. We do
not know what is object and what is background.

¢ The cocktail party effect describes the ability to focus one's
listening attention on a single talker among a mixture of
conversations and background noises, ignoring other
conversations.

e A single talker: Interest Points

@ Other conversations: background




PGMM 3.

* This method is based on Interest Points (IPs).
 Why? Because there are few IP’s (sparse).
 They capture important (interesting) parts of the object.

@ An interest point is a point in the image which &

» well-defined position, include an attribute of scale
» robust to photometric and geometric transformations

@ Interest operator

¢ Kadir-Brady operator
¢ SIFT operator




PGMM 4:

Correspondence problem.

Some interest-points (IPs) are background
Others are from the object,

But from which part of the object?

¢ Why we need inference to solve correspondence problem?

o Data used by Orban is clean and vocabulary known;

o PGMMs extract IP’s and clustering them into a vocabulary
from natural images;

o PGMMs needs to extract IP's and match them to words
already known from a new image.




PGMM 5:

* The Basic Idea:

@ | he basic idea of PGMMs is to search over model structure to
find optimal structure.

@ The whole procedure is a greedy search,

©Q Initially, all of the data are assumed to be generated by a
background model, without any spatial relationship between
them;

© Expand the structure by using AND/OR graph grammar, and
the grammar will be demonstrated below;

© For each extension, use the model evaluation method to
evaluate it and get a score. Accept the extension with the
highest score and update the structure;

Q Repeat 2 & 3 until the score almost doesn't change, exit with
graph structure then.




PGMM 6:

* The model is built by a Grammars.
* The basic elements are triplets of IP’s.

@ Trplets is based on the three related nodes' position zj, scale
|; and orientation #;. r; = {z;,/;,0;} denote the position
feature for a point, and | = {r,, rp, 1 } denotes a triplet

e The graph grammars are,

Q@ AND extersion. Combine the new triplet and old one
© OR extension. Connect the new triplet with an old one.




PGMM 7:

e Grammars —and how to grow them.

e Start with a triplet — and another triplet — if the resulting
model fits the data better.

Model selection — choose between models.
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PGMM 8:

 Model section is performed by evaluating the probability
that they model generates the data.

* |n practice, we make a standard approximation (Laplace).

@ For model selection, to integrate # is a big challenge, Leo used
the maximum value of @ to replace the results of integral,

PO =D _P(D|H.6*.1) P(HIE* . 1)P(&*|1)P(I) (14)
i H

@ Using Laplace approximation.




PGMM 9:

 Some experimental results on Caltech 101:

* Could only use a limited number of model because this
approach needs a lot of data.

* Unusual to do unsupervised learning for Caltech.
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The classification performance for 26 classes that have at least 80
images. T he average classification rate is 87.6 percent.



PGMM 10.
Summary:

Could learn one, two, three or more models if the dataset
required it (e.g. plane, face, bike).

Could learn object models even when half the data was random
background.

Performance of models was as good as alternative (supervised
methods) for the set of objects with sufficient data (in 2006).



PGMM 11.

Limitations of PGMM: this model only uses image
features defined at interest points.

How to improve?

Use this model to learn a ‘skeleton structure” of
the object.

Then use the skeleton to train a model which uses
more cues — edges and appearance.

Eureka Moment? — when the simple IP model is
powerful enough to train a model with more cues.

POM'’s Paper. Y. Chen, L. Zhu, A.L. Yuille, and HJ
Zhang. PAMI. Oct. 2009.



Unsupervised Hierarchical

Structure Learning

 Task: given 10 training images, no labeling, no
alignment, highly ambiguous features.
— Estimate Graph structure (nodes and edges)
— Estimate the parameters.

Correspondence is
unknown

+
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The Dictionary: From Generic Parts to
Object Structures

e Unified representation (RCMs) and learning

* Bridge the gap between the generic features and
specific object structures
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Bottom-up Learning

Suspicious
Coincidence

Competitive
Exclusion
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# of Concepts

Dictionary Size, Part Sharing and
Computational Complexity
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Top-down refinement

e Fill in missing parts
 Examine every node from top to bottom
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Part Sharing for multiple objects

Strategy: share parts between different objects
and viewpoints.




Learning Shared Parts

Unsupervised learning algorithm to learn
parts shared between different objects.

Zhu, Chen, Freeman, Torralba, Yuille 2010.

Structure Induction — learning the graph
structures and learning the parameters.

Supplemented by supervised learning of
masks.



Many Objects/Viewpoints

120 templates: 5 viewpoints & 26 classes
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Learn Hierarchical Dictionary.

Low-level to Mid-level to High-level.

Learn by suspicious coincidences.
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Part Sharing decreases with Levels
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Multi-View Single Class Performance

 Comparable to State of the Art.

(c) LabelMe Multi-view Car dataset

(b) Weizmann Horse dataset

Multi-view Motorbike dataset

(a)
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(2) Conclusion

* Unsupervised Structure Learning is possible,
but very difficult.

* Question: can (limited) additional information
make structure learning much easier (e.g., one
annotated example of the object?).

* How do humans learn object structure?
Humans learn in a life-long manner since
infancy. Infants learn by interacting with the
world, touching and playing with objects, not
simply by seeing many images.



Conclusion

 Compositional Models are challenging, but
their potential advantages are enormous —
multi-task, interpretable/explainable, domain
adaptation, out-of-distribution learning.



